V. Bergelson, N. Hindman
求助PDF
{"title":"一些新的多细胞拉姆齐理论结果","authors":"V. Bergelson, N. Hindman","doi":"10.1090/bproc/109","DOIUrl":null,"url":null,"abstract":"<p>We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper N\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {N}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more at a time in the complement of that set. A simple instance of our new results is the following. Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript f Baseline left-parenthesis double-struck upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>f</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}_{f}(\\mathbb {N})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the set of finite nonempty subsets of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper N\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {N}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Given any finite partition <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper N\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {N}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there exist <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">B_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript 1 comma 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{1,2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript 2 comma 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">A_{2,1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathcal R}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and sequences <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle x Subscript 1 comma n Baseline mathematical right-angle Subscript n equals 1 Superscript normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msubsup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle x_{1,n}\\rangle _{n=1}^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle x Subscript 2 comma n Baseline mathematical right-angle Subscript n equals 1 Superscript normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>n</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:msubsup>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle x_{2,n}\\rangle _{n=1}^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper N\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {N}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such that (1) for each <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F element-of script upper P Subscript f Baseline left-parenthesis double-struck upper N right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>F</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>f</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">F\\in \\mathcal {P}_{f}(\\mathbb {N})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript t element-of upper F Endscripts x Subscript 1 comma t element-of upper B 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi>F</mml:mi>\n </mml:mrow>\n </mml:munder>\n <mml:msub>\n <mml:mi>x</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mi>t</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>B</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\sum _{t\\in F}x_{1,t}\\in B_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript t element-of upper F Endscripts x Subscript 2 comma t element-of upper B 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo>∑<!-- ∑ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>t</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mi>F</mml:mi>\n </mml:mrow>\n </mml:munder>\n ","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some new multi-cell Ramsey theoretic results\",\"authors\":\"V. Bergelson, N. Hindman\",\"doi\":\"10.1090/bproc/109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend an old Ramsey Theoretic result which guarantees sums of terms from all partition regular linear systems in one cell of a partition of the set <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {N}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of positive integers. We were motivated by a quite recent result which guarantees a sequence in one set with all of its sums two or more at a time in the complement of that set. A simple instance of our new results is the following. Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P Subscript f Baseline left-parenthesis double-struck upper N right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>f</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {P}_{f}(\\\\mathbb {N})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> be the set of finite nonempty subsets of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {N}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Given any finite partition <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {N}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, there exist <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>B</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">B_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper B 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>B</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">B_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript 1 comma 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_{1,2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper A Subscript 2 comma 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">A_{2,1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">R</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathcal R}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and sequences <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mathematical left-angle x Subscript 1 comma n Baseline mathematical right-angle Subscript n equals 1 Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msubsup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msubsup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\langle x_{1,n}\\\\rangle _{n=1}^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mathematical left-angle x Subscript 2 comma n Baseline mathematical right-angle Subscript n equals 1 Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>n</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:msubsup>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msubsup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\langle x_{2,n}\\\\rangle _{n=1}^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper N\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {N}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> such that (1) for each <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F element-of script upper P Subscript f Baseline left-parenthesis double-struck upper N right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>F</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>f</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">F\\\\in \\\\mathcal {P}_{f}(\\\\mathbb {N})</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma-summation Underscript t element-of upper F Endscripts x Subscript 1 comma t element-of upper B 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>t</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi>F</mml:mi>\\n </mml:mrow>\\n </mml:munder>\\n <mml:msub>\\n <mml:mi>x</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mi>t</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msub>\\n <mml:mi>B</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sum _{t\\\\in F}x_{1,t}\\\\in B_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma-summation Underscript t element-of upper F Endscripts x Subscript 2 comma t element-of upper B 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo>∑<!-- ∑ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>t</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:mi>F</mml:mi>\\n </mml:mrow>\\n </mml:munder>\\n \",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
引用
批量引用