基于人工神经网络的太阳能光伏系统MPPT算法

Lakshmi P.N Jyothy, M. Sindhu
{"title":"基于人工神经网络的太阳能光伏系统MPPT算法","authors":"Lakshmi P.N Jyothy, M. Sindhu","doi":"10.1109/ICEES.2018.8443277","DOIUrl":null,"url":null,"abstract":"The need of renewable energy integration with power system is shooting up day by day. Solar PV generation has an important role for battery charging, grid tied applications etc. In order to intensify output power of a solar photovoltaic arrangement, it is imperative to find the maximum possible energy harvest from photovoltaic panel. In this paper Maximum Power Point Tracking (MPPT) controller for solar photovoltaic system is developed by practicing artificial neural network (ANN). Also the performance of an ANN based MPPT controller is compared with Conventional MPPT methods. In particular hill climbing method (perturb & observe), Incremental Conductance method and fractional open circuit voltage method. Simulations are done by using MATLAB/SIMULINK to analyze results.","PeriodicalId":134828,"journal":{"name":"2018 4th International Conference on Electrical Energy Systems (ICEES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"An Artificial Neural Network based MPPT Algorithm For Solar PV System\",\"authors\":\"Lakshmi P.N Jyothy, M. Sindhu\",\"doi\":\"10.1109/ICEES.2018.8443277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need of renewable energy integration with power system is shooting up day by day. Solar PV generation has an important role for battery charging, grid tied applications etc. In order to intensify output power of a solar photovoltaic arrangement, it is imperative to find the maximum possible energy harvest from photovoltaic panel. In this paper Maximum Power Point Tracking (MPPT) controller for solar photovoltaic system is developed by practicing artificial neural network (ANN). Also the performance of an ANN based MPPT controller is compared with Conventional MPPT methods. In particular hill climbing method (perturb & observe), Incremental Conductance method and fractional open circuit voltage method. Simulations are done by using MATLAB/SIMULINK to analyze results.\",\"PeriodicalId\":134828,\"journal\":{\"name\":\"2018 4th International Conference on Electrical Energy Systems (ICEES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Electrical Energy Systems (ICEES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEES.2018.8443277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Electrical Energy Systems (ICEES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEES.2018.8443277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

可再生能源与电力系统集成的需求日益增加。太阳能光伏发电在电池充电、并网应用等方面具有重要作用。为了增强太阳能光伏发电装置的输出功率,必须从光伏板中找到最大可能的能量收集。本文采用人工神经网络(ANN)实现了太阳能光伏发电系统的最大功率点跟踪(MPPT)控制器。并将基于人工神经网络的MPPT控制器与传统的MPPT控制器进行了性能比较。特别是爬坡法(扰动和观察),增量电导法和分数开路电压法。利用MATLAB/SIMULINK对仿真结果进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Artificial Neural Network based MPPT Algorithm For Solar PV System
The need of renewable energy integration with power system is shooting up day by day. Solar PV generation has an important role for battery charging, grid tied applications etc. In order to intensify output power of a solar photovoltaic arrangement, it is imperative to find the maximum possible energy harvest from photovoltaic panel. In this paper Maximum Power Point Tracking (MPPT) controller for solar photovoltaic system is developed by practicing artificial neural network (ANN). Also the performance of an ANN based MPPT controller is compared with Conventional MPPT methods. In particular hill climbing method (perturb & observe), Incremental Conductance method and fractional open circuit voltage method. Simulations are done by using MATLAB/SIMULINK to analyze results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信