{"title":"基于KF-SVM的脑机接口分类新方法","authors":"Yang Banghua, Han Zhijun, Wang Qian, He Liangfei","doi":"10.1109/ISCID.2013.55","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel classification method named KF-SVM (Kernel Fisher, Support Vector Machine), which is used for the EEG (Electroencephalography) classification of two classes of imagery data in BCIs (brain-computer interfaces). This method combines the kernel fisher and SVM. Its detailed process is as follows: First, the CSP (Common Spatial Patterns) is used to obtain features, and then the within-class scatter is calculated based on these features. The scatter is added into the RBF (Radical Basis Function) kernel function to construct a new kernel function. The obtained new kernel is integrated into the support vector machine to get a new classification model. The KF-SVM may overcome the following defects of the SVM: 1) the SVM maximizes the classification margin without considering within-class scatter. 2) The classification surface of the SVM between two types of EEG data only depends on boundary samples and misclassified samples. To evaluate effectiveness of the proposed KF-SVM method, the data from the 2008 international BCI competition and experiments of our laboratory are processed. The experimental result shows that the proposed KF-SVM classification algorithm can well classify EEG data and improve the correct rate of EEG recognition in BCIs.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Classification Method Based on KF-SVM in Brain Computer Interfaces\",\"authors\":\"Yang Banghua, Han Zhijun, Wang Qian, He Liangfei\",\"doi\":\"10.1109/ISCID.2013.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel classification method named KF-SVM (Kernel Fisher, Support Vector Machine), which is used for the EEG (Electroencephalography) classification of two classes of imagery data in BCIs (brain-computer interfaces). This method combines the kernel fisher and SVM. Its detailed process is as follows: First, the CSP (Common Spatial Patterns) is used to obtain features, and then the within-class scatter is calculated based on these features. The scatter is added into the RBF (Radical Basis Function) kernel function to construct a new kernel function. The obtained new kernel is integrated into the support vector machine to get a new classification model. The KF-SVM may overcome the following defects of the SVM: 1) the SVM maximizes the classification margin without considering within-class scatter. 2) The classification surface of the SVM between two types of EEG data only depends on boundary samples and misclassified samples. To evaluate effectiveness of the proposed KF-SVM method, the data from the 2008 international BCI competition and experiments of our laboratory are processed. The experimental result shows that the proposed KF-SVM classification algorithm can well classify EEG data and improve the correct rate of EEG recognition in BCIs.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Classification Method Based on KF-SVM in Brain Computer Interfaces
This paper proposes a novel classification method named KF-SVM (Kernel Fisher, Support Vector Machine), which is used for the EEG (Electroencephalography) classification of two classes of imagery data in BCIs (brain-computer interfaces). This method combines the kernel fisher and SVM. Its detailed process is as follows: First, the CSP (Common Spatial Patterns) is used to obtain features, and then the within-class scatter is calculated based on these features. The scatter is added into the RBF (Radical Basis Function) kernel function to construct a new kernel function. The obtained new kernel is integrated into the support vector machine to get a new classification model. The KF-SVM may overcome the following defects of the SVM: 1) the SVM maximizes the classification margin without considering within-class scatter. 2) The classification surface of the SVM between two types of EEG data only depends on boundary samples and misclassified samples. To evaluate effectiveness of the proposed KF-SVM method, the data from the 2008 international BCI competition and experiments of our laboratory are processed. The experimental result shows that the proposed KF-SVM classification algorithm can well classify EEG data and improve the correct rate of EEG recognition in BCIs.