回程约束小蜂窝网络中缓存感知的用户关联

Francesco Pantisano, M. Bennis, W. Saad, M. Debbah
{"title":"回程约束小蜂窝网络中缓存感知的用户关联","authors":"Francesco Pantisano, M. Bennis, W. Saad, M. Debbah","doi":"10.1109/WIOPT.2014.6850276","DOIUrl":null,"url":null,"abstract":"Anticipating multimedia file requests via caching at the small cell base stations (SBSs) of a cellular network has emerged as a promising technique for optimizing the quality of service (QoS) of wireless user equipments (UEs). However, developing efficient caching strategies must properly account for specific small cell constraints, such as backhaul congestion and limited storage capacity. In this paper, we address the problem of devising a user-cell association, in which the SBSs exploit caching capabilities to overcome the backhaul capacity limitations and enhance the users' QoS. In the proposed approach, the SBSs individually decide on which UEs to service based on both content availability and on the data rates they can deliver, given the interference and backhaul capacity limitations. We formulate the problem as a one-to-many matching game between SBSs and UEs. To solve this game, we propose a distributed algorithm, based on the deferred acceptance scheme, that enables the players (i.e., UEs and SBSs) to self-organize into a stable matching, in a reasonable number of algorithm iterations. Simulation results show that the proposed cell association scheme yields significant gains, reaching up to 21% improvement compared to a traditional cell association techniques with no caching considerations.","PeriodicalId":381489,"journal":{"name":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Cache-aware user association in backhaul-constrained small cell networks\",\"authors\":\"Francesco Pantisano, M. Bennis, W. Saad, M. Debbah\",\"doi\":\"10.1109/WIOPT.2014.6850276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anticipating multimedia file requests via caching at the small cell base stations (SBSs) of a cellular network has emerged as a promising technique for optimizing the quality of service (QoS) of wireless user equipments (UEs). However, developing efficient caching strategies must properly account for specific small cell constraints, such as backhaul congestion and limited storage capacity. In this paper, we address the problem of devising a user-cell association, in which the SBSs exploit caching capabilities to overcome the backhaul capacity limitations and enhance the users' QoS. In the proposed approach, the SBSs individually decide on which UEs to service based on both content availability and on the data rates they can deliver, given the interference and backhaul capacity limitations. We formulate the problem as a one-to-many matching game between SBSs and UEs. To solve this game, we propose a distributed algorithm, based on the deferred acceptance scheme, that enables the players (i.e., UEs and SBSs) to self-organize into a stable matching, in a reasonable number of algorithm iterations. Simulation results show that the proposed cell association scheme yields significant gains, reaching up to 21% improvement compared to a traditional cell association techniques with no caching considerations.\",\"PeriodicalId\":381489,\"journal\":{\"name\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2014.6850276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2014.6850276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

在蜂窝网络的小蜂窝基站(SBSs)上通过缓存预测多媒体文件请求已成为优化无线用户设备(ue)服务质量(QoS)的一种有前途的技术。但是,开发有效的缓存策略必须适当考虑特定的小单元约束,例如回程拥塞和有限的存储容量。在本文中,我们解决了设计用户单元关联的问题,其中SBSs利用缓存功能来克服回程容量限制并提高用户的QoS。在建议的方法中,考虑到干扰和回程容量限制,SBSs根据内容可用性和它们可以提供的数据速率分别决定服务哪些ue。我们将这个问题表述为一个SBSs和ue之间一对多的匹配博弈。为了解决这一博弈,我们提出了一种基于延迟接受方案的分布式算法,该算法使参与者(即ue和SBSs)能够在合理的算法迭代次数下自组织成稳定的匹配。仿真结果表明,与不考虑缓存的传统单元关联技术相比,所提出的单元关联方案获得了显著的增益,提高了21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cache-aware user association in backhaul-constrained small cell networks
Anticipating multimedia file requests via caching at the small cell base stations (SBSs) of a cellular network has emerged as a promising technique for optimizing the quality of service (QoS) of wireless user equipments (UEs). However, developing efficient caching strategies must properly account for specific small cell constraints, such as backhaul congestion and limited storage capacity. In this paper, we address the problem of devising a user-cell association, in which the SBSs exploit caching capabilities to overcome the backhaul capacity limitations and enhance the users' QoS. In the proposed approach, the SBSs individually decide on which UEs to service based on both content availability and on the data rates they can deliver, given the interference and backhaul capacity limitations. We formulate the problem as a one-to-many matching game between SBSs and UEs. To solve this game, we propose a distributed algorithm, based on the deferred acceptance scheme, that enables the players (i.e., UEs and SBSs) to self-organize into a stable matching, in a reasonable number of algorithm iterations. Simulation results show that the proposed cell association scheme yields significant gains, reaching up to 21% improvement compared to a traditional cell association techniques with no caching considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信