{"title":"交互能源管理中的需求分析","authors":"Sreenithya Sumesh, A. Krishna, C. Subramanian","doi":"10.1049/PBPO139E_CH3","DOIUrl":null,"url":null,"abstract":"This chapter focusses on the effective usage of transactive energy (TE) and the importance of developing an economical TE-management (TEM) process. TE is a concept that can play a vital role in improving the efficiency and reliability of a power system. This notion is promising for the energy industry in providing an intelligent and interactive future. This concept initiates various requirements for power distribution and transmission that works efficiently and is totally reliable. This leads to the exploration of requirements engineering (RE) approaches which can play a vital role in the development of TE and management process. This chapter explains the usage of RE models in relation to micro-grid and smart grid development. The wide-ranging development of smart grid systems demands supplementary software models so that its full potential can be explored and utilised. It only makes sense that consolidation of extensive usage of distributed energy and renewable energy sources is important in relation to the future of smart grid to bring about an economical and reliable functioning of a power system. An innovative approach in the form of TE towards the future smart grid is highly beneficial for the power-system operations. This novel approach has been extensively researched in recent years around the world. Within this chapter, we are outlining a goal-oriented RE (GORE) approach to structure TEM system. The main objective of this chapter is to perform reasoning and impact of nonfunctional requirements (NFRs) on the TEM. This reasoning will help decision makers in getting the desired outcomes from an efficient and reliable power system.","PeriodicalId":316065,"journal":{"name":"Variability, Scalability and Stability of Microgrids","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Requirements analysis in transactive energy management\",\"authors\":\"Sreenithya Sumesh, A. Krishna, C. Subramanian\",\"doi\":\"10.1049/PBPO139E_CH3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter focusses on the effective usage of transactive energy (TE) and the importance of developing an economical TE-management (TEM) process. TE is a concept that can play a vital role in improving the efficiency and reliability of a power system. This notion is promising for the energy industry in providing an intelligent and interactive future. This concept initiates various requirements for power distribution and transmission that works efficiently and is totally reliable. This leads to the exploration of requirements engineering (RE) approaches which can play a vital role in the development of TE and management process. This chapter explains the usage of RE models in relation to micro-grid and smart grid development. The wide-ranging development of smart grid systems demands supplementary software models so that its full potential can be explored and utilised. It only makes sense that consolidation of extensive usage of distributed energy and renewable energy sources is important in relation to the future of smart grid to bring about an economical and reliable functioning of a power system. An innovative approach in the form of TE towards the future smart grid is highly beneficial for the power-system operations. This novel approach has been extensively researched in recent years around the world. Within this chapter, we are outlining a goal-oriented RE (GORE) approach to structure TEM system. The main objective of this chapter is to perform reasoning and impact of nonfunctional requirements (NFRs) on the TEM. This reasoning will help decision makers in getting the desired outcomes from an efficient and reliable power system.\",\"PeriodicalId\":316065,\"journal\":{\"name\":\"Variability, Scalability and Stability of Microgrids\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Variability, Scalability and Stability of Microgrids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBPO139E_CH3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Variability, Scalability and Stability of Microgrids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBPO139E_CH3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Requirements analysis in transactive energy management
This chapter focusses on the effective usage of transactive energy (TE) and the importance of developing an economical TE-management (TEM) process. TE is a concept that can play a vital role in improving the efficiency and reliability of a power system. This notion is promising for the energy industry in providing an intelligent and interactive future. This concept initiates various requirements for power distribution and transmission that works efficiently and is totally reliable. This leads to the exploration of requirements engineering (RE) approaches which can play a vital role in the development of TE and management process. This chapter explains the usage of RE models in relation to micro-grid and smart grid development. The wide-ranging development of smart grid systems demands supplementary software models so that its full potential can be explored and utilised. It only makes sense that consolidation of extensive usage of distributed energy and renewable energy sources is important in relation to the future of smart grid to bring about an economical and reliable functioning of a power system. An innovative approach in the form of TE towards the future smart grid is highly beneficial for the power-system operations. This novel approach has been extensively researched in recent years around the world. Within this chapter, we are outlining a goal-oriented RE (GORE) approach to structure TEM system. The main objective of this chapter is to perform reasoning and impact of nonfunctional requirements (NFRs) on the TEM. This reasoning will help decision makers in getting the desired outcomes from an efficient and reliable power system.