基于非线性自回归移动平均(NARMA-L2)神经控制器的车轮纵滑调节*

R. R. Dajay, Jason L. Española, A. Bandala, R. Bedruz, R. R. Vicerra, E. Dadios
{"title":"基于非线性自回归移动平均(NARMA-L2)神经控制器的车轮纵滑调节*","authors":"R. R. Dajay, Jason L. Española, A. Bandala, R. Bedruz, R. R. Vicerra, E. Dadios","doi":"10.1109/RITAPP.2019.8932939","DOIUrl":null,"url":null,"abstract":"In this study, the implementation of a nonlinear autoregressive-moving average model ( NARMA-L2) neural network controller to maximize the tra ction of tires during braking scenarios was explored. The proposed controller and system dynamics was done in Simulink. All in all, the neural network controller shows good stability and good response in following the reference trajectory or desired slip ratio. It has experienced the peak worst error of around 2%, its best performance was reached after 89 epochs and it can reach around 99.5% of the reference trajectory or desired slip ratio. Further research should focus on hardware implementation, integration with slip estimation techniques , and, better sets of training data to make the controller more adaptive to different environment and road surface characteristics.","PeriodicalId":234023,"journal":{"name":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Wheel Slip Regulation using Nonlinear Autoregressive-Moving Average (NARMA-L2) Neural Controller*\",\"authors\":\"R. R. Dajay, Jason L. Española, A. Bandala, R. Bedruz, R. R. Vicerra, E. Dadios\",\"doi\":\"10.1109/RITAPP.2019.8932939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the implementation of a nonlinear autoregressive-moving average model ( NARMA-L2) neural network controller to maximize the tra ction of tires during braking scenarios was explored. The proposed controller and system dynamics was done in Simulink. All in all, the neural network controller shows good stability and good response in following the reference trajectory or desired slip ratio. It has experienced the peak worst error of around 2%, its best performance was reached after 89 epochs and it can reach around 99.5% of the reference trajectory or desired slip ratio. Further research should focus on hardware implementation, integration with slip estimation techniques , and, better sets of training data to make the controller more adaptive to different environment and road surface characteristics.\",\"PeriodicalId\":234023,\"journal\":{\"name\":\"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RITAPP.2019.8932939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RITAPP.2019.8932939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,探讨了非线性自回归移动平均模型(NARMA-L2)神经网络控制器在制动场景下最大化轮胎牵引力的实现。在Simulink中完成了所提出的控制器和系统动力学设计。总而言之,神经网络控制器在遵循参考轨迹或期望滑移比方面具有良好的稳定性和响应性。该算法的峰值误差约为2%,在89次迭代后达到最佳性能,可达到参考轨迹或期望滑移比的99.5%左右。进一步的研究应集中在硬件实现、与滑移估计技术的集成以及更好的训练数据集上,使控制器能够更好地适应不同的环境和路面特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal Wheel Slip Regulation using Nonlinear Autoregressive-Moving Average (NARMA-L2) Neural Controller*
In this study, the implementation of a nonlinear autoregressive-moving average model ( NARMA-L2) neural network controller to maximize the tra ction of tires during braking scenarios was explored. The proposed controller and system dynamics was done in Simulink. All in all, the neural network controller shows good stability and good response in following the reference trajectory or desired slip ratio. It has experienced the peak worst error of around 2%, its best performance was reached after 89 epochs and it can reach around 99.5% of the reference trajectory or desired slip ratio. Further research should focus on hardware implementation, integration with slip estimation techniques , and, better sets of training data to make the controller more adaptive to different environment and road surface characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信