W. IanWongC., M. Jaward, Vishnu Monn Baskaran, Chong Hin Chee, M. L. Sim
{"title":"基于潜空间表示的联合信道估计和信号检测","authors":"W. IanWongC., M. Jaward, Vishnu Monn Baskaran, Chong Hin Chee, M. L. Sim","doi":"10.1109/ISPACS57703.2022.10082835","DOIUrl":null,"url":null,"abstract":"This paper presents a data-driven unsupervised Deep Learning-based joint channel estimation and signal detection method for a narrowband wireless communication system. Our proposed Deep Learning-based architecture uses a Variational Autoencoder (VAE) that can combat the effects of additive white Gaussian noise and Rayleigh fading by encoding the input into a lower dimensional representation as the latent space outputs. The lower dimensional representation is used to extract the symbol information and is classified to the corresponding symbols of the transmitted signal using a classifier. We propose two approaches for the VAE-based architecture by using a parallel 1-D VAE and a joint 2-D VAE that takes different signal representations. From our simulation results, the proposed VAE-based architectures can achieve BER performance improvements over a deep Convolutional Neural Network approach and corre-lator detector.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Channel Estimation and Signal Detection using Latent Space Representations in VAE\",\"authors\":\"W. IanWongC., M. Jaward, Vishnu Monn Baskaran, Chong Hin Chee, M. L. Sim\",\"doi\":\"10.1109/ISPACS57703.2022.10082835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a data-driven unsupervised Deep Learning-based joint channel estimation and signal detection method for a narrowband wireless communication system. Our proposed Deep Learning-based architecture uses a Variational Autoencoder (VAE) that can combat the effects of additive white Gaussian noise and Rayleigh fading by encoding the input into a lower dimensional representation as the latent space outputs. The lower dimensional representation is used to extract the symbol information and is classified to the corresponding symbols of the transmitted signal using a classifier. We propose two approaches for the VAE-based architecture by using a parallel 1-D VAE and a joint 2-D VAE that takes different signal representations. From our simulation results, the proposed VAE-based architectures can achieve BER performance improvements over a deep Convolutional Neural Network approach and corre-lator detector.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Channel Estimation and Signal Detection using Latent Space Representations in VAE
This paper presents a data-driven unsupervised Deep Learning-based joint channel estimation and signal detection method for a narrowband wireless communication system. Our proposed Deep Learning-based architecture uses a Variational Autoencoder (VAE) that can combat the effects of additive white Gaussian noise and Rayleigh fading by encoding the input into a lower dimensional representation as the latent space outputs. The lower dimensional representation is used to extract the symbol information and is classified to the corresponding symbols of the transmitted signal using a classifier. We propose two approaches for the VAE-based architecture by using a parallel 1-D VAE and a joint 2-D VAE that takes different signal representations. From our simulation results, the proposed VAE-based architectures can achieve BER performance improvements over a deep Convolutional Neural Network approach and corre-lator detector.