局部隐式二次回归对噪声点云的分段C/sup /连续曲面重建

Hui Xie, Jianning Wang, Jing Hua, Hong Qin, A. Kaufman
{"title":"局部隐式二次回归对噪声点云的分段C/sup /连续曲面重建","authors":"Hui Xie, Jianning Wang, Jing Hua, Hong Qin, A. Kaufman","doi":"10.1109/VISUAL.2003.1250359","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of surface reconstruction of highly noisy point clouds. The surfaces to be reconstructed are assumed to be 2-manifolds of piecewise C/sup 1/ continuity, with isolated small irregular regions of high curvature, sophisticated local topology or abrupt burst of noise. At each sample point, a quadric field is locally fitted via a modified moving least squares method. These locally fitted quadric fields are then blended together to produce a pseudo-signed distance field using Shepard's method. We introduce a prioritized front growing scheme in the process of local quadrics fitting. Flatter surface areas tend to grow faster. The already fitted regions will subsequently guide the fitting of those irregular regions in their neighborhood.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Piecewise C/sup 1/ continuous surface reconstruction of noisy point clouds via local implicit quadric regression\",\"authors\":\"Hui Xie, Jianning Wang, Jing Hua, Hong Qin, A. Kaufman\",\"doi\":\"10.1109/VISUAL.2003.1250359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of surface reconstruction of highly noisy point clouds. The surfaces to be reconstructed are assumed to be 2-manifolds of piecewise C/sup 1/ continuity, with isolated small irregular regions of high curvature, sophisticated local topology or abrupt burst of noise. At each sample point, a quadric field is locally fitted via a modified moving least squares method. These locally fitted quadric fields are then blended together to produce a pseudo-signed distance field using Shepard's method. We introduce a prioritized front growing scheme in the process of local quadrics fitting. Flatter surface areas tend to grow faster. The already fitted regions will subsequently guide the fitting of those irregular regions in their neighborhood.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文研究了高噪声点云的表面重建问题。假设重构曲面为C/sup /连续性的2流形,具有孤立的高曲率小不规则区域、复杂的局部拓扑或突发性噪声。在每个采样点上,通过改进的移动最小二乘法局部拟合二次场。然后使用Shepard方法将这些局部拟合的二次场混合在一起产生伪符号距离场。在局部二次拟合过程中引入了一种优先生长方案。更平坦的地表往往生长得更快。已经拟合的区域随后将引导其邻近的不规则区域的拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piecewise C/sup 1/ continuous surface reconstruction of noisy point clouds via local implicit quadric regression
This paper addresses the problem of surface reconstruction of highly noisy point clouds. The surfaces to be reconstructed are assumed to be 2-manifolds of piecewise C/sup 1/ continuity, with isolated small irregular regions of high curvature, sophisticated local topology or abrupt burst of noise. At each sample point, a quadric field is locally fitted via a modified moving least squares method. These locally fitted quadric fields are then blended together to produce a pseudo-signed distance field using Shepard's method. We introduce a prioritized front growing scheme in the process of local quadrics fitting. Flatter surface areas tend to grow faster. The already fitted regions will subsequently guide the fitting of those irregular regions in their neighborhood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信