{"title":"使用反向残差和通道明智注意的单幅图像超分辨率","authors":"Md. Imran Hosen, Md Baharul Islam","doi":"10.1109/ISPACS57703.2022.10082788","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution (SISR) is the task of reconstructing a high-resolution image from a low-resolution image. Convolutional neural network (CNN)-based SISR techniques have demonstrated promising results. However, most CNN-based models cannot discriminate between different forms of information and treat them identically, which limits the models' ability to represent information. On the other hand, when a neural network's depth increases, the long-term information from earlier layers is more likely to degrade in later levels, which leads to poor image SR performance. This research presents a single image super-resolution strategy employing inverted residual connection with channel-wise attention (IRCA) to preserve meaningful information and keep long-term features while balancing performance and computational cost. The inverted residual block achieves long-term information persistence with fewer parameters than traditional residual networks. Meanwhile, by explicitly modeling inter-dependencies between channels, the attention block progressively adjusts channel-wise feature responses, enhancing essential information and suppressing unnecessary information. The efficacy of our suggested approach is demonstrated in three publicly accessible datasets. Code is available at https://github.com/mdhosen/SISR_IResBlock","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Image Super-Resolution Using Inverted Residual and Channel-Wise Attention\",\"authors\":\"Md. Imran Hosen, Md Baharul Islam\",\"doi\":\"10.1109/ISPACS57703.2022.10082788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-image super-resolution (SISR) is the task of reconstructing a high-resolution image from a low-resolution image. Convolutional neural network (CNN)-based SISR techniques have demonstrated promising results. However, most CNN-based models cannot discriminate between different forms of information and treat them identically, which limits the models' ability to represent information. On the other hand, when a neural network's depth increases, the long-term information from earlier layers is more likely to degrade in later levels, which leads to poor image SR performance. This research presents a single image super-resolution strategy employing inverted residual connection with channel-wise attention (IRCA) to preserve meaningful information and keep long-term features while balancing performance and computational cost. The inverted residual block achieves long-term information persistence with fewer parameters than traditional residual networks. Meanwhile, by explicitly modeling inter-dependencies between channels, the attention block progressively adjusts channel-wise feature responses, enhancing essential information and suppressing unnecessary information. The efficacy of our suggested approach is demonstrated in three publicly accessible datasets. Code is available at https://github.com/mdhosen/SISR_IResBlock\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single Image Super-Resolution Using Inverted Residual and Channel-Wise Attention
Single-image super-resolution (SISR) is the task of reconstructing a high-resolution image from a low-resolution image. Convolutional neural network (CNN)-based SISR techniques have demonstrated promising results. However, most CNN-based models cannot discriminate between different forms of information and treat them identically, which limits the models' ability to represent information. On the other hand, when a neural network's depth increases, the long-term information from earlier layers is more likely to degrade in later levels, which leads to poor image SR performance. This research presents a single image super-resolution strategy employing inverted residual connection with channel-wise attention (IRCA) to preserve meaningful information and keep long-term features while balancing performance and computational cost. The inverted residual block achieves long-term information persistence with fewer parameters than traditional residual networks. Meanwhile, by explicitly modeling inter-dependencies between channels, the attention block progressively adjusts channel-wise feature responses, enhancing essential information and suppressing unnecessary information. The efficacy of our suggested approach is demonstrated in three publicly accessible datasets. Code is available at https://github.com/mdhosen/SISR_IResBlock