S. Mulgaonker, G. Hawkins, K. Ramakrishna, A. Mawer, E. Winkler
{"title":"用于高功率的PBGA:延长热包层","authors":"S. Mulgaonker, G. Hawkins, K. Ramakrishna, A. Mawer, E. Winkler","doi":"10.1109/ECTC.1996.517463","DOIUrl":null,"url":null,"abstract":"ULSI devices continue to evolve in the direction of higher pincounts, powers and clock speeds. Current usage of the (cavity up) PBGA has been limited to I/Os of 150-360 and powers of 2-3 W. There is a need to extend the performance characteristics of the PBGA as a low cost packaging alternative for evolving devices. This study reports on the thermal performance of a 400 I/O PBGA design for powers of 7-10 W for PC/Workstation applications. Thermal performance is improved by lowering the resistances to heat flow via junction to board (R/sub jb/), junction to case (R/sub jc/) and case to ambient (R/sub ca/). The case to ambient resistance is lowered by using a heat sink attached to the package, evaluated at forced air flow of 1 m/s, typical for workstation environments. A PBGA package has been developed for a 12.7 mm die on a 29 mm, 2 metal layer substrate. The design utilizes thermal vias to lower the R/sub jb/. R/sub jc/ is lowered by decreasing the mold compound thickness. Design parameters for these features are derived and optimized through finite element simulations. Attaching a heatsink to the package is critical for extending the power dissipation from 2-3 W to the 7+ W range. The peripheral area around the PBGA makes it naturally suited for a demountable heatsink attach. An easy clip-on method of heatsink attach is developed as an alternative to the current time-consuming practice of epoxy bonding. Spring loaded clip attach prototypes are designed to minimize interfacial resistance to 0.75/spl deg/C/W when the heatsink is in dry contact with the mold compound.","PeriodicalId":143519,"journal":{"name":"1996 Proceedings 46th Electronic Components and Technology Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PBGA for high power: extending the thermal envelope\",\"authors\":\"S. Mulgaonker, G. Hawkins, K. Ramakrishna, A. Mawer, E. Winkler\",\"doi\":\"10.1109/ECTC.1996.517463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ULSI devices continue to evolve in the direction of higher pincounts, powers and clock speeds. Current usage of the (cavity up) PBGA has been limited to I/Os of 150-360 and powers of 2-3 W. There is a need to extend the performance characteristics of the PBGA as a low cost packaging alternative for evolving devices. This study reports on the thermal performance of a 400 I/O PBGA design for powers of 7-10 W for PC/Workstation applications. Thermal performance is improved by lowering the resistances to heat flow via junction to board (R/sub jb/), junction to case (R/sub jc/) and case to ambient (R/sub ca/). The case to ambient resistance is lowered by using a heat sink attached to the package, evaluated at forced air flow of 1 m/s, typical for workstation environments. A PBGA package has been developed for a 12.7 mm die on a 29 mm, 2 metal layer substrate. The design utilizes thermal vias to lower the R/sub jb/. R/sub jc/ is lowered by decreasing the mold compound thickness. Design parameters for these features are derived and optimized through finite element simulations. Attaching a heatsink to the package is critical for extending the power dissipation from 2-3 W to the 7+ W range. The peripheral area around the PBGA makes it naturally suited for a demountable heatsink attach. An easy clip-on method of heatsink attach is developed as an alternative to the current time-consuming practice of epoxy bonding. Spring loaded clip attach prototypes are designed to minimize interfacial resistance to 0.75/spl deg/C/W when the heatsink is in dry contact with the mold compound.\",\"PeriodicalId\":143519,\"journal\":{\"name\":\"1996 Proceedings 46th Electronic Components and Technology Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 Proceedings 46th Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.1996.517463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Proceedings 46th Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.1996.517463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PBGA for high power: extending the thermal envelope
ULSI devices continue to evolve in the direction of higher pincounts, powers and clock speeds. Current usage of the (cavity up) PBGA has been limited to I/Os of 150-360 and powers of 2-3 W. There is a need to extend the performance characteristics of the PBGA as a low cost packaging alternative for evolving devices. This study reports on the thermal performance of a 400 I/O PBGA design for powers of 7-10 W for PC/Workstation applications. Thermal performance is improved by lowering the resistances to heat flow via junction to board (R/sub jb/), junction to case (R/sub jc/) and case to ambient (R/sub ca/). The case to ambient resistance is lowered by using a heat sink attached to the package, evaluated at forced air flow of 1 m/s, typical for workstation environments. A PBGA package has been developed for a 12.7 mm die on a 29 mm, 2 metal layer substrate. The design utilizes thermal vias to lower the R/sub jb/. R/sub jc/ is lowered by decreasing the mold compound thickness. Design parameters for these features are derived and optimized through finite element simulations. Attaching a heatsink to the package is critical for extending the power dissipation from 2-3 W to the 7+ W range. The peripheral area around the PBGA makes it naturally suited for a demountable heatsink attach. An easy clip-on method of heatsink attach is developed as an alternative to the current time-consuming practice of epoxy bonding. Spring loaded clip attach prototypes are designed to minimize interfacial resistance to 0.75/spl deg/C/W when the heatsink is in dry contact with the mold compound.