语义文档标注排序模型

Syarifah Bahiyah Rahayu, S. Noah, Andrianto Arfan Wardhana
{"title":"语义文档标注排序模型","authors":"Syarifah Bahiyah Rahayu, S. Noah, Andrianto Arfan Wardhana","doi":"10.1109/ACT.2010.56","DOIUrl":null,"url":null,"abstract":"With the support of semantic annotation and domain ontology, semantic web is able to assist people in querying rich documents. However, generating queried semantic documents without ranking them in a right order is ineffective. In this paper, we are extending FF-ICF algorithm with the concept spreading. For experimentation, this algorithm is applied into a research prototype retrieval engine, PicoDoc. The PicoDoc system uses corpus that has pre-annotated documents as its data reference to run query against, based on real-life dataset from ABC and BBC news article corpus. The corpus is based on OCAS2008 ontology. The experiment shows a modified FFICF-related spread concept yields promising results in retrieving related information.","PeriodicalId":147311,"journal":{"name":"2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Semantic Document Annotation Ranking Model\",\"authors\":\"Syarifah Bahiyah Rahayu, S. Noah, Andrianto Arfan Wardhana\",\"doi\":\"10.1109/ACT.2010.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the support of semantic annotation and domain ontology, semantic web is able to assist people in querying rich documents. However, generating queried semantic documents without ranking them in a right order is ineffective. In this paper, we are extending FF-ICF algorithm with the concept spreading. For experimentation, this algorithm is applied into a research prototype retrieval engine, PicoDoc. The PicoDoc system uses corpus that has pre-annotated documents as its data reference to run query against, based on real-life dataset from ABC and BBC news article corpus. The corpus is based on OCAS2008 ontology. The experiment shows a modified FFICF-related spread concept yields promising results in retrieving related information.\",\"PeriodicalId\":147311,\"journal\":{\"name\":\"2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACT.2010.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACT.2010.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在语义标注和领域本体的支持下,语义网能够帮助人们查询丰富的文档。但是,生成查询的语义文档而不按正确的顺序排列是无效的。本文对FF-ICF算法进行了概念扩展。为了进行实验,将该算法应用于研究原型检索引擎PicoDoc中。PicoDoc系统使用带有预注释文档的语料库作为其数据参考来运行查询,基于ABC和BBC新闻文章语料库的真实数据集。该语料库基于OCAS2008本体。实验表明,改进的fficf相关传播概念在检索相关信息方面取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Document Annotation Ranking Model
With the support of semantic annotation and domain ontology, semantic web is able to assist people in querying rich documents. However, generating queried semantic documents without ranking them in a right order is ineffective. In this paper, we are extending FF-ICF algorithm with the concept spreading. For experimentation, this algorithm is applied into a research prototype retrieval engine, PicoDoc. The PicoDoc system uses corpus that has pre-annotated documents as its data reference to run query against, based on real-life dataset from ABC and BBC news article corpus. The corpus is based on OCAS2008 ontology. The experiment shows a modified FFICF-related spread concept yields promising results in retrieving related information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信