N. S. Nadzri, V. Retnasamy, Z. Sauli, S. Taniselass, T. Mei
{"title":"基于Ansys的前向阶跃(FFS)微通道压力分布表征","authors":"N. S. Nadzri, V. Retnasamy, Z. Sauli, S. Taniselass, T. Mei","doi":"10.1109/RSM.2013.6706476","DOIUrl":null,"url":null,"abstract":"The fundamental principles of fluid flow characteristics is vital in a microfluidic system. The integration of fluid flow exploitation and fabrication technologycreates good platform in various fields such as biomedical, clinical instrumentation and cell culture system. One of the important parameter to characterize a fluid is its pressure. In this article, characterization of pressure distribution in forward facing step (FFS) microchannel has been investigated using CFD-Ansys software. The primary goal of this research is to study the effect of the step height in FFS configuration on fluid flow pressure distribution. Hence, three different step heights have been employed as measurement comparison. Pressure drop trend was observed across the microchannel. The highest step height showed the highest pressure drop.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure distribution characterization in forward facing step (FFS) microchannel using Ansys\",\"authors\":\"N. S. Nadzri, V. Retnasamy, Z. Sauli, S. Taniselass, T. Mei\",\"doi\":\"10.1109/RSM.2013.6706476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental principles of fluid flow characteristics is vital in a microfluidic system. The integration of fluid flow exploitation and fabrication technologycreates good platform in various fields such as biomedical, clinical instrumentation and cell culture system. One of the important parameter to characterize a fluid is its pressure. In this article, characterization of pressure distribution in forward facing step (FFS) microchannel has been investigated using CFD-Ansys software. The primary goal of this research is to study the effect of the step height in FFS configuration on fluid flow pressure distribution. Hence, three different step heights have been employed as measurement comparison. Pressure drop trend was observed across the microchannel. The highest step height showed the highest pressure drop.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pressure distribution characterization in forward facing step (FFS) microchannel using Ansys
The fundamental principles of fluid flow characteristics is vital in a microfluidic system. The integration of fluid flow exploitation and fabrication technologycreates good platform in various fields such as biomedical, clinical instrumentation and cell culture system. One of the important parameter to characterize a fluid is its pressure. In this article, characterization of pressure distribution in forward facing step (FFS) microchannel has been investigated using CFD-Ansys software. The primary goal of this research is to study the effect of the step height in FFS configuration on fluid flow pressure distribution. Hence, three different step heights have been employed as measurement comparison. Pressure drop trend was observed across the microchannel. The highest step height showed the highest pressure drop.