{"title":"电子衍射的晶体管","authors":"G. Bernstein, A. Kriman","doi":"10.1109/CORNEL.1989.79841","DOIUrl":null,"url":null,"abstract":"The design, fabrication, and applications of QUADFETs (quantum diffraction field effect transistors) are described. The QUADFETs will enable Fraunhofer diffraction to be demonstrated and exploited. These devices are high-electron-mobility transistors (HEMTs), in which the source and a specially formed drain perform the functions of the light source and viewing screen of an analogous optical system, respectively. Experimental results on QUADFETs are presented.<<ETX>>","PeriodicalId":445524,"journal":{"name":"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron-diffraction transistors\",\"authors\":\"G. Bernstein, A. Kriman\",\"doi\":\"10.1109/CORNEL.1989.79841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design, fabrication, and applications of QUADFETs (quantum diffraction field effect transistors) are described. The QUADFETs will enable Fraunhofer diffraction to be demonstrated and exploited. These devices are high-electron-mobility transistors (HEMTs), in which the source and a specially formed drain perform the functions of the light source and viewing screen of an analogous optical system, respectively. Experimental results on QUADFETs are presented.<<ETX>>\",\"PeriodicalId\":445524,\"journal\":{\"name\":\"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CORNEL.1989.79841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CORNEL.1989.79841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The design, fabrication, and applications of QUADFETs (quantum diffraction field effect transistors) are described. The QUADFETs will enable Fraunhofer diffraction to be demonstrated and exploited. These devices are high-electron-mobility transistors (HEMTs), in which the source and a specially formed drain perform the functions of the light source and viewing screen of an analogous optical system, respectively. Experimental results on QUADFETs are presented.<>