去除最有效位平面的lsb匹配隐写分析

M. A. Mehrabi, H. Aghaeinia, M. Abolghasemi
{"title":"去除最有效位平面的lsb匹配隐写分析","authors":"M. A. Mehrabi, H. Aghaeinia, M. Abolghasemi","doi":"10.1109/ISTEL.2008.4651396","DOIUrl":null,"url":null,"abstract":"This paper proposed a new steganalysis scheme of LSB-matching steganography based on statistical moments of the DFT of histogram of multi-level wavelet subbands. Before deriving these wavelet subbands a pre-processing apply to images under the test. The pre-processing contains removing some most significant bit planes. Then we decompose the image using three-level Haar discrete wavelet transform (DWT) into 13 subbands (here the image itself is considered as the LL0 subband).The Fourier transform of each subband histogram, is calculated. Then it is divided into low and high frequency bands. The first three statistical moments of each band are selected to form a 78-dimensional feature vector for Steganalysis. Support vector machines (SVM) classifier is then used to discriminate between stego-images and innocent images.","PeriodicalId":133602,"journal":{"name":"2008 International Symposium on Telecommunications","volume":"196 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Steganalysis of LSB-Matching steganography by removing most significant bit planes\",\"authors\":\"M. A. Mehrabi, H. Aghaeinia, M. Abolghasemi\",\"doi\":\"10.1109/ISTEL.2008.4651396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a new steganalysis scheme of LSB-matching steganography based on statistical moments of the DFT of histogram of multi-level wavelet subbands. Before deriving these wavelet subbands a pre-processing apply to images under the test. The pre-processing contains removing some most significant bit planes. Then we decompose the image using three-level Haar discrete wavelet transform (DWT) into 13 subbands (here the image itself is considered as the LL0 subband).The Fourier transform of each subband histogram, is calculated. Then it is divided into low and high frequency bands. The first three statistical moments of each band are selected to form a 78-dimensional feature vector for Steganalysis. Support vector machines (SVM) classifier is then used to discriminate between stego-images and innocent images.\",\"PeriodicalId\":133602,\"journal\":{\"name\":\"2008 International Symposium on Telecommunications\",\"volume\":\"196 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTEL.2008.4651396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTEL.2008.4651396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于多级小波子带直方图DFT统计矩的lsb匹配隐写分析新方案。在得到这些小波子带之前,对测试下的图像进行预处理。预处理包括去除一些最高有效位平面。然后我们使用三电平Haar离散小波变换(DWT)将图像分解成13个子带(这里图像本身被认为是LL0子带)。计算每个子带直方图的傅里叶变换。然后将其分为低频段和高频段。选取每个波段的前三个统计矩组成78维特征向量进行隐写分析。然后利用支持向量机(SVM)分类器对隐写图像和无隐写图像进行区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steganalysis of LSB-Matching steganography by removing most significant bit planes
This paper proposed a new steganalysis scheme of LSB-matching steganography based on statistical moments of the DFT of histogram of multi-level wavelet subbands. Before deriving these wavelet subbands a pre-processing apply to images under the test. The pre-processing contains removing some most significant bit planes. Then we decompose the image using three-level Haar discrete wavelet transform (DWT) into 13 subbands (here the image itself is considered as the LL0 subband).The Fourier transform of each subband histogram, is calculated. Then it is divided into low and high frequency bands. The first three statistical moments of each band are selected to form a 78-dimensional feature vector for Steganalysis. Support vector machines (SVM) classifier is then used to discriminate between stego-images and innocent images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信