{"title":"多控制Toffoli门的基本量子门实现","authors":"D. Michael Miller, R. Wille, Zahra Sasanian","doi":"10.1109/ISMVL.2011.54","DOIUrl":null,"url":null,"abstract":"A new method for determining elementary quantum gate realizations for multiple-control Toffoli (MCT) gates is presented. The realization for each MCT gate is formed as a composition of realizations of smaller MCT gates. A marking algorithm which is more effective than the traditional moving rule is used to optimize the final circuit. The main improvement is that the resulting circuits make significantly better use of ancillary lines than has been achieved in earlier approaches. Initial results are also presented for circuits with nearest-neighbour communication. These results show that the overall approach is not as effective for that problem indicating that research on direct synthesis of nearest-neighbour quantum circuits should be considered. While, the results presented are for the NCV quantum gate library (i.e. for quantum circuits composed of NOT gates, controlled-NOT gates, and controlled-V=V+ gates), the approach can be applied to other libraries of elementary quantum gates.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"Elementary Quantum Gate Realizations for Multiple-Control Toffoli Gates\",\"authors\":\"D. Michael Miller, R. Wille, Zahra Sasanian\",\"doi\":\"10.1109/ISMVL.2011.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for determining elementary quantum gate realizations for multiple-control Toffoli (MCT) gates is presented. The realization for each MCT gate is formed as a composition of realizations of smaller MCT gates. A marking algorithm which is more effective than the traditional moving rule is used to optimize the final circuit. The main improvement is that the resulting circuits make significantly better use of ancillary lines than has been achieved in earlier approaches. Initial results are also presented for circuits with nearest-neighbour communication. These results show that the overall approach is not as effective for that problem indicating that research on direct synthesis of nearest-neighbour quantum circuits should be considered. While, the results presented are for the NCV quantum gate library (i.e. for quantum circuits composed of NOT gates, controlled-NOT gates, and controlled-V=V+ gates), the approach can be applied to other libraries of elementary quantum gates.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elementary Quantum Gate Realizations for Multiple-Control Toffoli Gates
A new method for determining elementary quantum gate realizations for multiple-control Toffoli (MCT) gates is presented. The realization for each MCT gate is formed as a composition of realizations of smaller MCT gates. A marking algorithm which is more effective than the traditional moving rule is used to optimize the final circuit. The main improvement is that the resulting circuits make significantly better use of ancillary lines than has been achieved in earlier approaches. Initial results are also presented for circuits with nearest-neighbour communication. These results show that the overall approach is not as effective for that problem indicating that research on direct synthesis of nearest-neighbour quantum circuits should be considered. While, the results presented are for the NCV quantum gate library (i.e. for quantum circuits composed of NOT gates, controlled-NOT gates, and controlled-V=V+ gates), the approach can be applied to other libraries of elementary quantum gates.