多数投票点分类器在电机故障诊断中的泛化能力

Akshata S. Agarwal, N. Verma
{"title":"多数投票点分类器在电机故障诊断中的泛化能力","authors":"Akshata S. Agarwal, N. Verma","doi":"10.1109/ICIINFS.2016.8263056","DOIUrl":null,"url":null,"abstract":"Recently a class of classifiers named Majority Vote Point (MVP) classifiers on account of lower VC dimension were shown to give better generalization performance than linear classifiers. As the work is recent, this paper first presents a brief overview on the MVP classifier, and discusses the unique properties, with pros and cons of the classifier. Further, the paper with help of a case study, presents effective MVP classifier based solutions for bearing fault diagnosis in induction motor(s). The case study is found to clearly re-validate the effectiveness of MVP classifier in machine fault diagnosis problems.","PeriodicalId":234609,"journal":{"name":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization ability of majority vote point classifiers for motor fault diagnosis\",\"authors\":\"Akshata S. Agarwal, N. Verma\",\"doi\":\"10.1109/ICIINFS.2016.8263056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently a class of classifiers named Majority Vote Point (MVP) classifiers on account of lower VC dimension were shown to give better generalization performance than linear classifiers. As the work is recent, this paper first presents a brief overview on the MVP classifier, and discusses the unique properties, with pros and cons of the classifier. Further, the paper with help of a case study, presents effective MVP classifier based solutions for bearing fault diagnosis in induction motor(s). The case study is found to clearly re-validate the effectiveness of MVP classifier in machine fault diagnosis problems.\",\"PeriodicalId\":234609,\"journal\":{\"name\":\"2016 11th International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2016.8263056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2016.8263056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,一种基于VC维较低的多数投票点(MVP)分类器被证明具有比线性分类器更好的泛化性能。由于这项工作是最近的,本文首先简要介绍了MVP分类器,并讨论了其独特的性质,以及分类器的优缺点。在此基础上,结合实例研究,提出了一种有效的基于MVP分类器的异步电动机轴承故障诊断方法。实例研究清楚地再次验证了MVP分类器在机械故障诊断问题中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization ability of majority vote point classifiers for motor fault diagnosis
Recently a class of classifiers named Majority Vote Point (MVP) classifiers on account of lower VC dimension were shown to give better generalization performance than linear classifiers. As the work is recent, this paper first presents a brief overview on the MVP classifier, and discusses the unique properties, with pros and cons of the classifier. Further, the paper with help of a case study, presents effective MVP classifier based solutions for bearing fault diagnosis in induction motor(s). The case study is found to clearly re-validate the effectiveness of MVP classifier in machine fault diagnosis problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信