数据路径合成中的安全时钟寄存器分配

Keisuke Inoue, M. Kaneko, T. Iwagaki
{"title":"数据路径合成中的安全时钟寄存器分配","authors":"Keisuke Inoue, M. Kaneko, T. Iwagaki","doi":"10.1109/ICCD.2008.4751850","DOIUrl":null,"url":null,"abstract":"For recent and future nanometer-technology VLSIs, static and dynamic delay variations become a serious problem. In many cases, the hold constraint, as well as the setup constraint, becomes critical for latching a correct signal under delay variations. While the timing violation due to the fail of the setup constraint can be fixed by tuning a clock frequency or using a delayed latch, the timing violation due to the fail of the hold constraint cannot be fixed by those methods in general. Our approach to delay variations (in particular, the hold constraint) proposed in this paper is a novel register assignment strategy in high-level synthesis, which guarantees safe clocking by contra-data-direction (CDD) clocking. After the formulation of this new register assignment problem, we prove NP-hardness of the problem, and then derive an integer linear programming formulation for the problem. The proposed method receives a scheduled data flow graph, and generates a datapath having (1) robustness against delay variations, which is ensured by CDD-based register assignment, and (2) the minimum possible number of registers. Experimental results show the effectiveness of the proposed method for some benchmark circuits.","PeriodicalId":345501,"journal":{"name":"2008 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Safe clocking register assignment in datapath synthesis\",\"authors\":\"Keisuke Inoue, M. Kaneko, T. Iwagaki\",\"doi\":\"10.1109/ICCD.2008.4751850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For recent and future nanometer-technology VLSIs, static and dynamic delay variations become a serious problem. In many cases, the hold constraint, as well as the setup constraint, becomes critical for latching a correct signal under delay variations. While the timing violation due to the fail of the setup constraint can be fixed by tuning a clock frequency or using a delayed latch, the timing violation due to the fail of the hold constraint cannot be fixed by those methods in general. Our approach to delay variations (in particular, the hold constraint) proposed in this paper is a novel register assignment strategy in high-level synthesis, which guarantees safe clocking by contra-data-direction (CDD) clocking. After the formulation of this new register assignment problem, we prove NP-hardness of the problem, and then derive an integer linear programming formulation for the problem. The proposed method receives a scheduled data flow graph, and generates a datapath having (1) robustness against delay variations, which is ensured by CDD-based register assignment, and (2) the minimum possible number of registers. Experimental results show the effectiveness of the proposed method for some benchmark circuits.\",\"PeriodicalId\":345501,\"journal\":{\"name\":\"2008 IEEE International Conference on Computer Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2008.4751850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2008.4751850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于最近和未来的纳米技术vlsi,静态和动态延迟变化将成为一个严重的问题。在许多情况下,保持约束以及设置约束对于在延迟变化下锁存正确的信号至关重要。虽然由于设置约束失败而导致的时间冲突可以通过调整时钟频率或使用延迟锁存器来修复,但由于保持约束失败而导致的时间冲突通常不能通过这些方法来修复。本文提出的延迟变化方法(特别是保持约束)是一种新的高级综合寄存器分配策略,它通过反向数据方向(CDD)时钟保证了安全时钟。在给出新的寄存器分配问题的公式后,证明了该问题的np -硬度,并推导出该问题的整数线性规划公式。该方法接收一个预定的数据流图,并生成一个具有(1)对延迟变化的鲁棒性的数据路径,这是由基于cdd的寄存器分配保证的;(2)尽可能少的寄存器数。实验结果表明了该方法对一些基准电路的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe clocking register assignment in datapath synthesis
For recent and future nanometer-technology VLSIs, static and dynamic delay variations become a serious problem. In many cases, the hold constraint, as well as the setup constraint, becomes critical for latching a correct signal under delay variations. While the timing violation due to the fail of the setup constraint can be fixed by tuning a clock frequency or using a delayed latch, the timing violation due to the fail of the hold constraint cannot be fixed by those methods in general. Our approach to delay variations (in particular, the hold constraint) proposed in this paper is a novel register assignment strategy in high-level synthesis, which guarantees safe clocking by contra-data-direction (CDD) clocking. After the formulation of this new register assignment problem, we prove NP-hardness of the problem, and then derive an integer linear programming formulation for the problem. The proposed method receives a scheduled data flow graph, and generates a datapath having (1) robustness against delay variations, which is ensured by CDD-based register assignment, and (2) the minimum possible number of registers. Experimental results show the effectiveness of the proposed method for some benchmark circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信