有机半导体单层的光谱学

R. He, N. G. Tassi, G. Blanchet, A. Pinczuk
{"title":"有机半导体单层的光谱学","authors":"R. He, N. G. Tassi, G. Blanchet, A. Pinczuk","doi":"10.1117/12.888197","DOIUrl":null,"url":null,"abstract":"Growing interest in organic molecular semiconductors is stimulated by their promising applications in flexible devices. Pentacene is a benchmark organic semiconductor material because of its potential applications in high mobility thin film transistors and optoelectronic devices. Highly uniform monolayers of pentacene grown on polymeric substrate of poly alpha-methylstyrene exhibit sharp and intense free exciton (FE) luminescence at low temperatures. The FE emission displays characteristic intensity that grows quadratically with the number of layers. Large enhancements of Raman scattering intensities at the FE resonance enable the first observations of low-lying lattice vibrational modes in films reaching the single monolayer level. The low-lying modes exhibit characteristic changes when going from a single monolayer to two layers, revealing that a phase akin to a thin film phase of pentacene already emerges in structures of only two monolayers. A simple analysis of mode splittings offers estimates of the strength of inter-layer interactions. The results demonstrate novel venues for ultra-thin film characterization and studies of interface effects in organic molecular semiconductor structures.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical spectroscopy of organic semiconductor monolayers\",\"authors\":\"R. He, N. G. Tassi, G. Blanchet, A. Pinczuk\",\"doi\":\"10.1117/12.888197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing interest in organic molecular semiconductors is stimulated by their promising applications in flexible devices. Pentacene is a benchmark organic semiconductor material because of its potential applications in high mobility thin film transistors and optoelectronic devices. Highly uniform monolayers of pentacene grown on polymeric substrate of poly alpha-methylstyrene exhibit sharp and intense free exciton (FE) luminescence at low temperatures. The FE emission displays characteristic intensity that grows quadratically with the number of layers. Large enhancements of Raman scattering intensities at the FE resonance enable the first observations of low-lying lattice vibrational modes in films reaching the single monolayer level. The low-lying modes exhibit characteristic changes when going from a single monolayer to two layers, revealing that a phase akin to a thin film phase of pentacene already emerges in structures of only two monolayers. A simple analysis of mode splittings offers estimates of the strength of inter-layer interactions. The results demonstrate novel venues for ultra-thin film characterization and studies of interface effects in organic molecular semiconductor structures.\",\"PeriodicalId\":316559,\"journal\":{\"name\":\"International Conference on Thin Film Physics and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.888197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.888197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机分子半导体在柔性器件中的应用前景激发了人们对其日益增长的兴趣。并五苯在高迁移率薄膜晶体管和光电子器件中具有潜在的应用前景,是有机半导体的标杆材料。在聚苯乙烯聚合物基底上生长的高度均匀的并五苯单层在低温下表现出强烈的自由激子(FE)发光。FE发射表现出随层数二次增长的特征强度。在FE共振中拉曼散射强度的大幅增强使得在达到单层水平的薄膜中首次观察到低空晶格振动模式。当从单层到两层时,低洼模式表现出特征变化,表明在只有两层的结构中已经出现了类似于并五苯薄膜相的相。对模式分裂的简单分析提供了层间相互作用强度的估计。该结果为超薄膜表征和有机分子半导体结构界面效应的研究提供了新的场所。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical spectroscopy of organic semiconductor monolayers
Growing interest in organic molecular semiconductors is stimulated by their promising applications in flexible devices. Pentacene is a benchmark organic semiconductor material because of its potential applications in high mobility thin film transistors and optoelectronic devices. Highly uniform monolayers of pentacene grown on polymeric substrate of poly alpha-methylstyrene exhibit sharp and intense free exciton (FE) luminescence at low temperatures. The FE emission displays characteristic intensity that grows quadratically with the number of layers. Large enhancements of Raman scattering intensities at the FE resonance enable the first observations of low-lying lattice vibrational modes in films reaching the single monolayer level. The low-lying modes exhibit characteristic changes when going from a single monolayer to two layers, revealing that a phase akin to a thin film phase of pentacene already emerges in structures of only two monolayers. A simple analysis of mode splittings offers estimates of the strength of inter-layer interactions. The results demonstrate novel venues for ultra-thin film characterization and studies of interface effects in organic molecular semiconductor structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信