使用消费类相机在黑暗中的长曝光定位

Michael Milford, I. Turner, Peter Corke
{"title":"使用消费类相机在黑暗中的长曝光定位","authors":"Michael Milford, I. Turner, Peter Corke","doi":"10.1109/ICRA.2013.6631105","DOIUrl":null,"url":null,"abstract":"In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a $100 webcam and a $500 camera. Our approach uses the camera's maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed grayscale images to using patch normalization and local neighborhood normalization - the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Long exposure localization in darkness using consumer cameras\",\"authors\":\"Michael Milford, I. Turner, Peter Corke\",\"doi\":\"10.1109/ICRA.2013.6631105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a $100 webcam and a $500 camera. Our approach uses the camera's maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed grayscale images to using patch normalization and local neighborhood normalization - the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6631105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们使用100美元的网络摄像头和500美元的摄像头演示了在比当前基准暗两个数量级以上的环境中基于被动视觉的定位。我们的方法使用相机的最大曝光持续时间和传感器增益,即使在没有光线的夜间环境中也能获得适当曝光的图像,尽管有极端程度的运动模糊。利用SeqSLAM算法,我们首先评估了在132 ms到10000 ms的模拟曝光时间下,可变运动模糊对定位性能的影响。然后,我们使用实际的长曝光相机数据集来演示两种不同环境下的昼夜定位。最后,我们进行了统计分析,比较了使用补丁归一化和局部邻域归一化(两个关键的SeqSLAM组件)匹配未处理灰度图像的基线性能。我们的结果和分析首次展示了为什么SeqSLAM算法是有效的,并展示了在极端感知变化下运行的基于相机的廉价定位系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long exposure localization in darkness using consumer cameras
In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a $100 webcam and a $500 camera. Our approach uses the camera's maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed grayscale images to using patch normalization and local neighborhood normalization - the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信