Ali Monavari Bidgoli, Sepideh Fattahi, Seyyed Hossein Seyyedaghaei Rezaei, M. Modarressi, M. Daneshtalab
{"title":"用于内存处理架构的灵活神经加速器","authors":"Ali Monavari Bidgoli, Sepideh Fattahi, Seyyed Hossein Seyyedaghaei Rezaei, M. Modarressi, M. Daneshtalab","doi":"10.1109/DDECS57882.2023.10139567","DOIUrl":null,"url":null,"abstract":"The performance of microprocessors under many modern workloads is mainly limited by the off-chip memory bandwidth. The emerging process-in-memory paradigm present a unique opportunity to reduce data movement overheads by moving computation closer to memory. State-of-the-art processing-in-memory proposals stack a logic layer on top of one or multiple memory layers in a 3D fashion and leverage the logic layer to build near-memory processing units. Such processing units are either application-specific accelerators or general-purpose cores. In this paper, we present NeuroPIM, a new processing-in-memory architecture that uses a neural network as the memory-side general-purpose accelerator. This design is mainly motivated by the observation that in many real-world applications, some program regions, or even the entire program, can be replaced by a neural network that is learned to approximate the program’s output. NeuroPIM benefits from both the flexibility of general-purpose processors and superior performance of application-specific accelerators. Experimental results show that NeuroPIM provides up to 41% speedup over a processor-side neural network accelerator and up to 8x speedup over a general-purpose processor.","PeriodicalId":220690,"journal":{"name":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NeuroPIM: Felxible Neural Accelerator for Processing-in-Memory Architectures\",\"authors\":\"Ali Monavari Bidgoli, Sepideh Fattahi, Seyyed Hossein Seyyedaghaei Rezaei, M. Modarressi, M. Daneshtalab\",\"doi\":\"10.1109/DDECS57882.2023.10139567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of microprocessors under many modern workloads is mainly limited by the off-chip memory bandwidth. The emerging process-in-memory paradigm present a unique opportunity to reduce data movement overheads by moving computation closer to memory. State-of-the-art processing-in-memory proposals stack a logic layer on top of one or multiple memory layers in a 3D fashion and leverage the logic layer to build near-memory processing units. Such processing units are either application-specific accelerators or general-purpose cores. In this paper, we present NeuroPIM, a new processing-in-memory architecture that uses a neural network as the memory-side general-purpose accelerator. This design is mainly motivated by the observation that in many real-world applications, some program regions, or even the entire program, can be replaced by a neural network that is learned to approximate the program’s output. NeuroPIM benefits from both the flexibility of general-purpose processors and superior performance of application-specific accelerators. Experimental results show that NeuroPIM provides up to 41% speedup over a processor-side neural network accelerator and up to 8x speedup over a general-purpose processor.\",\"PeriodicalId\":220690,\"journal\":{\"name\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS57882.2023.10139567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS57882.2023.10139567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NeuroPIM: Felxible Neural Accelerator for Processing-in-Memory Architectures
The performance of microprocessors under many modern workloads is mainly limited by the off-chip memory bandwidth. The emerging process-in-memory paradigm present a unique opportunity to reduce data movement overheads by moving computation closer to memory. State-of-the-art processing-in-memory proposals stack a logic layer on top of one or multiple memory layers in a 3D fashion and leverage the logic layer to build near-memory processing units. Such processing units are either application-specific accelerators or general-purpose cores. In this paper, we present NeuroPIM, a new processing-in-memory architecture that uses a neural network as the memory-side general-purpose accelerator. This design is mainly motivated by the observation that in many real-world applications, some program regions, or even the entire program, can be replaced by a neural network that is learned to approximate the program’s output. NeuroPIM benefits from both the flexibility of general-purpose processors and superior performance of application-specific accelerators. Experimental results show that NeuroPIM provides up to 41% speedup over a processor-side neural network accelerator and up to 8x speedup over a general-purpose processor.