基于传感器阶段Petri网的自动化制造系统生产周期分析

ShihSen Peng, Mengchu Zhou
{"title":"基于传感器阶段Petri网的自动化制造系统生产周期分析","authors":"ShihSen Peng, Mengchu Zhou","doi":"10.1109/ROBOT.2003.1242265","DOIUrl":null,"url":null,"abstract":"Production cycle time reduction in their discrete-event control systems (DECS) helps increase the productivity of automated manufacturing systems (AMS). Methods developed to evaluate the production cycle time are usually based on either the Design for Manufacture (DFM) or Design for Production (DFP) scheduling techniques. To evaluate the real cycle time at the programming level of controllers such as the ladder logic design of programmable logic controller (PLC) in DECS, this paper discusses a method to analyze the production cycle time based on the sensor-based stage Petri nets technique. The production time can be estimated at each stage directly from all the I/O sensors that are represented by the extended Petri nets: the sensor-based stage Petri net (SBSPN). The production cycle time required to complete each product is marked on the individual stage transition through the real timers in the SBSPN model. For the production of multiple products, different production cycles times are estimated through the stage-by-stage real timers of controller program. These production cycle times are able to evaluate the bottleneck of integrated manufacturing systems. An example is used to illustrate the approach.","PeriodicalId":315346,"journal":{"name":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Production cycle-time analysis based on sensor-based stage Petri nets for automated manufacturing systems\",\"authors\":\"ShihSen Peng, Mengchu Zhou\",\"doi\":\"10.1109/ROBOT.2003.1242265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Production cycle time reduction in their discrete-event control systems (DECS) helps increase the productivity of automated manufacturing systems (AMS). Methods developed to evaluate the production cycle time are usually based on either the Design for Manufacture (DFM) or Design for Production (DFP) scheduling techniques. To evaluate the real cycle time at the programming level of controllers such as the ladder logic design of programmable logic controller (PLC) in DECS, this paper discusses a method to analyze the production cycle time based on the sensor-based stage Petri nets technique. The production time can be estimated at each stage directly from all the I/O sensors that are represented by the extended Petri nets: the sensor-based stage Petri net (SBSPN). The production cycle time required to complete each product is marked on the individual stage transition through the real timers in the SBSPN model. For the production of multiple products, different production cycles times are estimated through the stage-by-stage real timers of controller program. These production cycle times are able to evaluate the bottleneck of integrated manufacturing systems. An example is used to illustrate the approach.\",\"PeriodicalId\":315346,\"journal\":{\"name\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2003.1242265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2003.1242265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

离散事件控制系统(DECS)的生产周期缩短有助于提高自动化制造系统(AMS)的生产率。用于评估生产周期时间的方法通常基于制造设计(DFM)或生产设计(DFP)调度技术。为了在可编程控制器(PLC)的梯形逻辑设计中评估控制器在编程层面的实际周期时间,本文讨论了一种基于基于传感器的阶段Petri网技术的生产周期时间分析方法。每个阶段的生产时间可以直接从扩展的Petri网(基于传感器的阶段Petri网(SBSPN))表示的所有I/O传感器中估计出来。完成每个产品所需的生产周期时间通过SBSPN模型中的实时计时器标记在各个阶段转换上。对于多种产品的生产,通过控制器程序的逐级实时定时器估计不同的生产周期时间。这些生产周期时间能够评估集成制造系统的瓶颈。用一个例子来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Production cycle-time analysis based on sensor-based stage Petri nets for automated manufacturing systems
Production cycle time reduction in their discrete-event control systems (DECS) helps increase the productivity of automated manufacturing systems (AMS). Methods developed to evaluate the production cycle time are usually based on either the Design for Manufacture (DFM) or Design for Production (DFP) scheduling techniques. To evaluate the real cycle time at the programming level of controllers such as the ladder logic design of programmable logic controller (PLC) in DECS, this paper discusses a method to analyze the production cycle time based on the sensor-based stage Petri nets technique. The production time can be estimated at each stage directly from all the I/O sensors that are represented by the extended Petri nets: the sensor-based stage Petri net (SBSPN). The production cycle time required to complete each product is marked on the individual stage transition through the real timers in the SBSPN model. For the production of multiple products, different production cycles times are estimated through the stage-by-stage real timers of controller program. These production cycle times are able to evaluate the bottleneck of integrated manufacturing systems. An example is used to illustrate the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信