Angelika Balliou, J. Pfleger, G. Skoulatakis, S. Kazim, J. Rakusan, S. Kennou, N. Glezos
{"title":"用于逻辑运算的可编程分子-纳米粒子多结网络","authors":"Angelika Balliou, J. Pfleger, G. Skoulatakis, S. Kazim, J. Rakusan, S. Kennou, N. Glezos","doi":"10.1145/3232195.3232225","DOIUrl":null,"url":null,"abstract":"We propose and investigate a nanoscale multi-junction network architecture that can be configured on-flight to perform Boolean logic functions at room temperature. The device exploits the electronic properties of randomly deposited molecule-interconnected metal nanoparticles, which act collectively as strongly nonlinear single-electron transistors. Disorder is being incorporated in the modeling of their electrical behavior and the collective response of interacting nano-components is being rationalized. The non-optimized energy consumption of the synaptic grid for a \"then-if\" logical computation is in the range of few aJ.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Programmable Molecular-Nanoparticle Multi-junction Networks for Logic Operations\",\"authors\":\"Angelika Balliou, J. Pfleger, G. Skoulatakis, S. Kazim, J. Rakusan, S. Kennou, N. Glezos\",\"doi\":\"10.1145/3232195.3232225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and investigate a nanoscale multi-junction network architecture that can be configured on-flight to perform Boolean logic functions at room temperature. The device exploits the electronic properties of randomly deposited molecule-interconnected metal nanoparticles, which act collectively as strongly nonlinear single-electron transistors. Disorder is being incorporated in the modeling of their electrical behavior and the collective response of interacting nano-components is being rationalized. The non-optimized energy consumption of the synaptic grid for a \\\"then-if\\\" logical computation is in the range of few aJ.\",\"PeriodicalId\":401010,\"journal\":{\"name\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3232195.3232225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Programmable Molecular-Nanoparticle Multi-junction Networks for Logic Operations
We propose and investigate a nanoscale multi-junction network architecture that can be configured on-flight to perform Boolean logic functions at room temperature. The device exploits the electronic properties of randomly deposited molecule-interconnected metal nanoparticles, which act collectively as strongly nonlinear single-electron transistors. Disorder is being incorporated in the modeling of their electrical behavior and the collective response of interacting nano-components is being rationalized. The non-optimized energy consumption of the synaptic grid for a "then-if" logical computation is in the range of few aJ.