{"title":"基于Edgeworth展开的二阶可靠性方法及其在可靠性设计优化中的应用","authors":"Rami Mansour, M. Olsson","doi":"10.1115/detc2019-97278","DOIUrl":null,"url":null,"abstract":"\n In the Second-Order Reliability Method, the limit-state function is approximated by a hyper-parabola in standard normal and uncorrelated space. However, there is no exact closed form expression for the probability of failure based on a hyper-parabolic limit-state function and the existing approximate formulas in the literature have been shown to have major drawbacks. Furthermore, in applications such as Reliability-based Design Optimization, analytical expressions, not only for the probability of failure but also for probabilistic sensitivities, are highly desirable for efficiency reasons. In this paper, a novel Second-Order Reliability Method is presented. The proposed expression is a function of three statistical measures: the Cornell Reliability Index, the skewness and the Kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the Most Probable Point. Furthermore, analytical sensitivities with respect to mean values of random variables and deterministic variables are presented. The sensitivities can be seen as the product of the sensitivities computed using the First-Order Reliability Method and a correction factor. The proposed expressions are studied and their applicability to Reliability-based Design Optimization is demonstrated.","PeriodicalId":198662,"journal":{"name":"Volume 2B: 45th Design Automation Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-Order Reliability Method Based on Edgeworth Expansion With Application to Reliability-Based Design Optimization\",\"authors\":\"Rami Mansour, M. Olsson\",\"doi\":\"10.1115/detc2019-97278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the Second-Order Reliability Method, the limit-state function is approximated by a hyper-parabola in standard normal and uncorrelated space. However, there is no exact closed form expression for the probability of failure based on a hyper-parabolic limit-state function and the existing approximate formulas in the literature have been shown to have major drawbacks. Furthermore, in applications such as Reliability-based Design Optimization, analytical expressions, not only for the probability of failure but also for probabilistic sensitivities, are highly desirable for efficiency reasons. In this paper, a novel Second-Order Reliability Method is presented. The proposed expression is a function of three statistical measures: the Cornell Reliability Index, the skewness and the Kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the Most Probable Point. Furthermore, analytical sensitivities with respect to mean values of random variables and deterministic variables are presented. The sensitivities can be seen as the product of the sensitivities computed using the First-Order Reliability Method and a correction factor. The proposed expressions are studied and their applicability to Reliability-based Design Optimization is demonstrated.\",\"PeriodicalId\":198662,\"journal\":{\"name\":\"Volume 2B: 45th Design Automation Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: 45th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-Order Reliability Method Based on Edgeworth Expansion With Application to Reliability-Based Design Optimization
In the Second-Order Reliability Method, the limit-state function is approximated by a hyper-parabola in standard normal and uncorrelated space. However, there is no exact closed form expression for the probability of failure based on a hyper-parabolic limit-state function and the existing approximate formulas in the literature have been shown to have major drawbacks. Furthermore, in applications such as Reliability-based Design Optimization, analytical expressions, not only for the probability of failure but also for probabilistic sensitivities, are highly desirable for efficiency reasons. In this paper, a novel Second-Order Reliability Method is presented. The proposed expression is a function of three statistical measures: the Cornell Reliability Index, the skewness and the Kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the Most Probable Point. Furthermore, analytical sensitivities with respect to mean values of random variables and deterministic variables are presented. The sensitivities can be seen as the product of the sensitivities computed using the First-Order Reliability Method and a correction factor. The proposed expressions are studied and their applicability to Reliability-based Design Optimization is demonstrated.