在异构架构上部署和优化卷积神经网络

Junning Jiang, Liang Cai, Feng Dong, Kehua Yu, Ke Chen, Wei Qu, Jianfei Jiang
{"title":"在异构架构上部署和优化卷积神经网络","authors":"Junning Jiang, Liang Cai, Feng Dong, Kehua Yu, Ke Chen, Wei Qu, Jianfei Jiang","doi":"10.1109/ASICON47005.2019.8983456","DOIUrl":null,"url":null,"abstract":"Deploying convolutional neural networks to hardware platform can accelerate the inference and is critical for the application of artificial intelligence. In this paper, we design an FPGA+CPU heterogeneous platform to accelerate CNNs. Dataflow optimizing, accelerator structure optimization and compute precision optimization are proposed to improve performance of the accelerating platform. Different ResNet and MobileNet networks are successfully deployed on the platform. By applying the proposed dataflow optimization and precision optimization, the performance improvement of inference is 3.25× on ResNet. By applying the accelerator structure optimization and precision optimization, the performance improvement of inference is 3.63× on MobileNet.","PeriodicalId":319342,"journal":{"name":"2019 IEEE 13th International Conference on ASIC (ASICON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deploying and Optimizing Convolutional Neural Networks on Heterogeneous Architecture\",\"authors\":\"Junning Jiang, Liang Cai, Feng Dong, Kehua Yu, Ke Chen, Wei Qu, Jianfei Jiang\",\"doi\":\"10.1109/ASICON47005.2019.8983456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deploying convolutional neural networks to hardware platform can accelerate the inference and is critical for the application of artificial intelligence. In this paper, we design an FPGA+CPU heterogeneous platform to accelerate CNNs. Dataflow optimizing, accelerator structure optimization and compute precision optimization are proposed to improve performance of the accelerating platform. Different ResNet and MobileNet networks are successfully deployed on the platform. By applying the proposed dataflow optimization and precision optimization, the performance improvement of inference is 3.25× on ResNet. By applying the accelerator structure optimization and precision optimization, the performance improvement of inference is 3.63× on MobileNet.\",\"PeriodicalId\":319342,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on ASIC (ASICON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on ASIC (ASICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON47005.2019.8983456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON47005.2019.8983456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将卷积神经网络部署到硬件平台上可以加快推理速度,对人工智能的应用至关重要。在本文中,我们设计了一个FPGA+CPU的异构平台来加速cnn。为了提高加速平台的性能,提出了数据流优化、加速器结构优化和计算精度优化。在平台上成功部署了不同的ResNet和MobileNet网络。通过应用所提出的数据流优化和精度优化,在ResNet上的推理性能提高了3.25倍。通过对加速器结构优化和精度优化,在MobileNet上的推理性能提高了3.63倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deploying and Optimizing Convolutional Neural Networks on Heterogeneous Architecture
Deploying convolutional neural networks to hardware platform can accelerate the inference and is critical for the application of artificial intelligence. In this paper, we design an FPGA+CPU heterogeneous platform to accelerate CNNs. Dataflow optimizing, accelerator structure optimization and compute precision optimization are proposed to improve performance of the accelerating platform. Different ResNet and MobileNet networks are successfully deployed on the platform. By applying the proposed dataflow optimization and precision optimization, the performance improvement of inference is 3.25× on ResNet. By applying the accelerator structure optimization and precision optimization, the performance improvement of inference is 3.63× on MobileNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信