{"title":"利用扫描源光学相干断层扫描和光学相干断层扫描血管造影对选定的黄斑营养不良症的形态特征和血管分布的新见解","authors":"M. Moussa, M. Leila","doi":"10.5772/INTECHOPEN.78679","DOIUrl":null,"url":null,"abstract":"Our perception of macular dystrophies has evolved overtime from collective grouping into hereditary disorders of unclear etiology and no effective treatment to avid search for the underlying pathogenic mechanism that would provide base for future therapy. A causal conjunction between abnormalities in the photoreceptors layer and the RPE— Bruch’s membrane complex and abnormal profile of the retinal vascular plexuses and the choriocapillaris—stands out as a plausible theory of pathogenesis. The recently introduced swept-source optical coherence tomography (SS-OCT) technology incorpo- rates long-wavelength (1050-nm) scanning light, less susceptibility to sensitivity roll-off, and ultrahigh-speed image acquisition. These features enabled in vivo noninvasive visualization of different strata of the outer retina and the choriocapillaris with unprec edented finesse. Furthermore, the SS-OCT technology incorporated a blood flow detec - tion algorithm; OCTARA that in tandem with the deeper penetration and superior axial resolution of SS-OCT enabled detailed assessment of the retinal capillary plexuses and the choriocapillaris in terms of structure and density. This novel technology could help explore yet undiscovered frontiers in the pathophysiology of macular dystrophies and guide future therapeutic approaches. This chapter includes a review of literature along with the authors’ experience in imaging selected macular dystrophies using SS-OCT and SS-OCT angiography (SS-OCTA). stem cell transplantation before irreversible visual dysfunction sets in.","PeriodicalId":228355,"journal":{"name":"OCT - Applications in Ophthalmology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel Insight into Morphological Features and Vascular Profile of Selected Macular Dystrophies Using Swept-Source Optical Coherence Tomography and Optical Coherence Tomography Angiography\",\"authors\":\"M. Moussa, M. Leila\",\"doi\":\"10.5772/INTECHOPEN.78679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our perception of macular dystrophies has evolved overtime from collective grouping into hereditary disorders of unclear etiology and no effective treatment to avid search for the underlying pathogenic mechanism that would provide base for future therapy. A causal conjunction between abnormalities in the photoreceptors layer and the RPE— Bruch’s membrane complex and abnormal profile of the retinal vascular plexuses and the choriocapillaris—stands out as a plausible theory of pathogenesis. The recently introduced swept-source optical coherence tomography (SS-OCT) technology incorpo- rates long-wavelength (1050-nm) scanning light, less susceptibility to sensitivity roll-off, and ultrahigh-speed image acquisition. These features enabled in vivo noninvasive visualization of different strata of the outer retina and the choriocapillaris with unprec edented finesse. Furthermore, the SS-OCT technology incorporated a blood flow detec - tion algorithm; OCTARA that in tandem with the deeper penetration and superior axial resolution of SS-OCT enabled detailed assessment of the retinal capillary plexuses and the choriocapillaris in terms of structure and density. This novel technology could help explore yet undiscovered frontiers in the pathophysiology of macular dystrophies and guide future therapeutic approaches. This chapter includes a review of literature along with the authors’ experience in imaging selected macular dystrophies using SS-OCT and SS-OCT angiography (SS-OCTA). stem cell transplantation before irreversible visual dysfunction sets in.\",\"PeriodicalId\":228355,\"journal\":{\"name\":\"OCT - Applications in Ophthalmology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCT - Applications in Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.78679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCT - Applications in Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Insight into Morphological Features and Vascular Profile of Selected Macular Dystrophies Using Swept-Source Optical Coherence Tomography and Optical Coherence Tomography Angiography
Our perception of macular dystrophies has evolved overtime from collective grouping into hereditary disorders of unclear etiology and no effective treatment to avid search for the underlying pathogenic mechanism that would provide base for future therapy. A causal conjunction between abnormalities in the photoreceptors layer and the RPE— Bruch’s membrane complex and abnormal profile of the retinal vascular plexuses and the choriocapillaris—stands out as a plausible theory of pathogenesis. The recently introduced swept-source optical coherence tomography (SS-OCT) technology incorpo- rates long-wavelength (1050-nm) scanning light, less susceptibility to sensitivity roll-off, and ultrahigh-speed image acquisition. These features enabled in vivo noninvasive visualization of different strata of the outer retina and the choriocapillaris with unprec edented finesse. Furthermore, the SS-OCT technology incorporated a blood flow detec - tion algorithm; OCTARA that in tandem with the deeper penetration and superior axial resolution of SS-OCT enabled detailed assessment of the retinal capillary plexuses and the choriocapillaris in terms of structure and density. This novel technology could help explore yet undiscovered frontiers in the pathophysiology of macular dystrophies and guide future therapeutic approaches. This chapter includes a review of literature along with the authors’ experience in imaging selected macular dystrophies using SS-OCT and SS-OCT angiography (SS-OCTA). stem cell transplantation before irreversible visual dysfunction sets in.