{"title":"锥形火花隙中亚纳秒点平面气体击穿","authors":"J. Spears, H. Krompholtz, L. Hatfield","doi":"10.1109/PPC.2003.1278064","DOIUrl":null,"url":null,"abstract":"Breakdown with sub-nanosecond delay time is of interest for high-speed low rep-rated switching and for plasma limiters to protect sensitive RADAR equipment from EM bursts. In order to apply fast high-voltage pulses to a test spark-gap without major pulse distortion, we use a coaxial transmission-line connected via a conical section to the spark-gap. Conventional gaps integrated into the inner conductor of a coaxial transmission-line with point-plane geometry suffer from major impedance mismatches as well as lumped capacitances. This limits the pulse risetime at the gap to at least one nanosecond. A gradual reduction of the inner and outer-conductor diameters was used in the conical section. This resulted in a voltage risetime across the gap of about 500 ps, where an original pulser risetime of 400 ps was used. Measured breakdown delay times, as a function of pressure in argon, show delay-time minima of less than 600 ps at a pressure of several torr and applied voltage amplitudes of 10 kV, for radii of curvature < 0.5/spl mu/m. Typical current amplification times, I/(dI/dt), are on the order of several 10/sup -10/ sec. Experiments with repetition rates of up to 1 kHz do not show any differences to single shot discharges at atmospheric pressures. At larger radii of curvature (10 /spl mu/m), corona-type discharges are observed with both point polarities, with currents smaller than 10/sup -4/ A, also without any differences between single shot and 1 kHz rep-rate.","PeriodicalId":143385,"journal":{"name":"Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sub-nanosecond point-plane gas breakdown in a conical-shaped spark gap\",\"authors\":\"J. Spears, H. Krompholtz, L. Hatfield\",\"doi\":\"10.1109/PPC.2003.1278064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breakdown with sub-nanosecond delay time is of interest for high-speed low rep-rated switching and for plasma limiters to protect sensitive RADAR equipment from EM bursts. In order to apply fast high-voltage pulses to a test spark-gap without major pulse distortion, we use a coaxial transmission-line connected via a conical section to the spark-gap. Conventional gaps integrated into the inner conductor of a coaxial transmission-line with point-plane geometry suffer from major impedance mismatches as well as lumped capacitances. This limits the pulse risetime at the gap to at least one nanosecond. A gradual reduction of the inner and outer-conductor diameters was used in the conical section. This resulted in a voltage risetime across the gap of about 500 ps, where an original pulser risetime of 400 ps was used. Measured breakdown delay times, as a function of pressure in argon, show delay-time minima of less than 600 ps at a pressure of several torr and applied voltage amplitudes of 10 kV, for radii of curvature < 0.5/spl mu/m. Typical current amplification times, I/(dI/dt), are on the order of several 10/sup -10/ sec. Experiments with repetition rates of up to 1 kHz do not show any differences to single shot discharges at atmospheric pressures. At larger radii of curvature (10 /spl mu/m), corona-type discharges are observed with both point polarities, with currents smaller than 10/sup -4/ A, also without any differences between single shot and 1 kHz rep-rate.\",\"PeriodicalId\":143385,\"journal\":{\"name\":\"Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPC.2003.1278064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2003.1278064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub-nanosecond point-plane gas breakdown in a conical-shaped spark gap
Breakdown with sub-nanosecond delay time is of interest for high-speed low rep-rated switching and for plasma limiters to protect sensitive RADAR equipment from EM bursts. In order to apply fast high-voltage pulses to a test spark-gap without major pulse distortion, we use a coaxial transmission-line connected via a conical section to the spark-gap. Conventional gaps integrated into the inner conductor of a coaxial transmission-line with point-plane geometry suffer from major impedance mismatches as well as lumped capacitances. This limits the pulse risetime at the gap to at least one nanosecond. A gradual reduction of the inner and outer-conductor diameters was used in the conical section. This resulted in a voltage risetime across the gap of about 500 ps, where an original pulser risetime of 400 ps was used. Measured breakdown delay times, as a function of pressure in argon, show delay-time minima of less than 600 ps at a pressure of several torr and applied voltage amplitudes of 10 kV, for radii of curvature < 0.5/spl mu/m. Typical current amplification times, I/(dI/dt), are on the order of several 10/sup -10/ sec. Experiments with repetition rates of up to 1 kHz do not show any differences to single shot discharges at atmospheric pressures. At larger radii of curvature (10 /spl mu/m), corona-type discharges are observed with both point polarities, with currents smaller than 10/sup -4/ A, also without any differences between single shot and 1 kHz rep-rate.