Huey-Lin Lee, T. Hertel, B. Sohngen, N. Ramankutty
{"title":"建立综合土地利用数据库以评估温室气体减缓潜力","authors":"Huey-Lin Lee, T. Hertel, B. Sohngen, N. Ramankutty","doi":"10.21642/gtap.tp25","DOIUrl":null,"url":null,"abstract":"This paper describes the GTAP Land Use Data Base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use. In the GTAP-AEZ Data Base, there are 18 AEZs, covering six different lengths of growing period spread over three different climatic zones. Land using activities include crop production, livestock raising, and forestry. In so doing, this extension of the standard GTAP Data Base permits a much more refined characterization of the potential for shifting land use amongst these different activities. When combined with information on greenhouse gas emissions, this data base permits economists interested in integrated assessment of climate change to better assess the role of land use change in greenhouse gases mitigation strategies.","PeriodicalId":281904,"journal":{"name":"GTAP Technical Paper Series","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation\",\"authors\":\"Huey-Lin Lee, T. Hertel, B. Sohngen, N. Ramankutty\",\"doi\":\"10.21642/gtap.tp25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the GTAP Land Use Data Base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use. In the GTAP-AEZ Data Base, there are 18 AEZs, covering six different lengths of growing period spread over three different climatic zones. Land using activities include crop production, livestock raising, and forestry. In so doing, this extension of the standard GTAP Data Base permits a much more refined characterization of the potential for shifting land use amongst these different activities. When combined with information on greenhouse gas emissions, this data base permits economists interested in integrated assessment of climate change to better assess the role of land use change in greenhouse gases mitigation strategies.\",\"PeriodicalId\":281904,\"journal\":{\"name\":\"GTAP Technical Paper Series\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GTAP Technical Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21642/gtap.tp25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GTAP Technical Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21642/gtap.tp25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation
This paper describes the GTAP Land Use Data Base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use. In the GTAP-AEZ Data Base, there are 18 AEZs, covering six different lengths of growing period spread over three different climatic zones. Land using activities include crop production, livestock raising, and forestry. In so doing, this extension of the standard GTAP Data Base permits a much more refined characterization of the potential for shifting land use amongst these different activities. When combined with information on greenhouse gas emissions, this data base permits economists interested in integrated assessment of climate change to better assess the role of land use change in greenhouse gases mitigation strategies.