基于卷积神经网络的OCT视网膜病理分类

Dewi Annisa Anam, L. Novamizanti, S. Rizal
{"title":"基于卷积神经网络的OCT视网膜病理分类","authors":"Dewi Annisa Anam, L. Novamizanti, S. Rizal","doi":"10.1109/COSITE52651.2021.9649630","DOIUrl":null,"url":null,"abstract":"Optical Coherence Tomography (OCT) is a medical imaging technique used to detect pathology that occurs in the macula. The manual analysis process tends to be less effective and efficient both in time and diagnostic accuracy. This study proposes an automatic classification system for generalized macular retinal pathology based on OCT retinal images using Convolutional Neural Network (CNN) with EfficientNet architecture. In the preprocessing stage, three types of signal processing are analyzed on the image, namely Gaussian Filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gabor Filter. This paper also evaluates two different optimizers, namely Adaptive Moment (Adam) and Stochastic Gradient Decent (SGD). The EfficientNet model works using a combined scaling method to balance all network dimensions. The experimental results show that the proposed model's preprocessing CLAHE and Adam's optimization function can classify four standard retinal macular pathology classes. The four classes include Age-Related Macular Degeneration (AMD), Choroidal Neovascularization (CNV), and Diabetic Macular Edema (DME), with an accuracy of 90.60. %, and a loss of 0.27.","PeriodicalId":399316,"journal":{"name":"2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Retinal Pathology via OCT Images using Convolutional Neural Network\",\"authors\":\"Dewi Annisa Anam, L. Novamizanti, S. Rizal\",\"doi\":\"10.1109/COSITE52651.2021.9649630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical Coherence Tomography (OCT) is a medical imaging technique used to detect pathology that occurs in the macula. The manual analysis process tends to be less effective and efficient both in time and diagnostic accuracy. This study proposes an automatic classification system for generalized macular retinal pathology based on OCT retinal images using Convolutional Neural Network (CNN) with EfficientNet architecture. In the preprocessing stage, three types of signal processing are analyzed on the image, namely Gaussian Filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gabor Filter. This paper also evaluates two different optimizers, namely Adaptive Moment (Adam) and Stochastic Gradient Decent (SGD). The EfficientNet model works using a combined scaling method to balance all network dimensions. The experimental results show that the proposed model's preprocessing CLAHE and Adam's optimization function can classify four standard retinal macular pathology classes. The four classes include Age-Related Macular Degeneration (AMD), Choroidal Neovascularization (CNV), and Diabetic Macular Edema (DME), with an accuracy of 90.60. %, and a loss of 0.27.\",\"PeriodicalId\":399316,\"journal\":{\"name\":\"2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COSITE52651.2021.9649630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COSITE52651.2021.9649630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

光学相干断层扫描(OCT)是一种用于检测黄斑病变的医学成像技术。人工分析过程在时间和诊断准确性方面往往效率较低。本研究提出了一种基于OCT视网膜图像的广泛性黄斑视网膜病理自动分类系统,该系统采用卷积神经网络(Convolutional Neural Network, CNN)和effentnet架构。在预处理阶段,对图像进行了三种类型的信号处理,分别是高斯滤波器、对比度有限自适应直方图均衡化(CLAHE)和Gabor滤波器。本文还评估了两种不同的优化器,即自适应矩(Adam)和随机梯度体面(SGD)。effentnet模型使用组合缩放方法来平衡所有网络维度。实验结果表明,该模型的预处理CLAHE和Adam优化函数可以对视网膜黄斑的4个标准病理类别进行分类。这四种类型包括年龄相关性黄斑变性(AMD)、脉络膜新生血管(CNV)和糖尿病性黄斑水肿(DME),准确率为90.60。%,亏损0.27。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Retinal Pathology via OCT Images using Convolutional Neural Network
Optical Coherence Tomography (OCT) is a medical imaging technique used to detect pathology that occurs in the macula. The manual analysis process tends to be less effective and efficient both in time and diagnostic accuracy. This study proposes an automatic classification system for generalized macular retinal pathology based on OCT retinal images using Convolutional Neural Network (CNN) with EfficientNet architecture. In the preprocessing stage, three types of signal processing are analyzed on the image, namely Gaussian Filter, Contrast Limited Adaptive Histogram Equalization (CLAHE), and Gabor Filter. This paper also evaluates two different optimizers, namely Adaptive Moment (Adam) and Stochastic Gradient Decent (SGD). The EfficientNet model works using a combined scaling method to balance all network dimensions. The experimental results show that the proposed model's preprocessing CLAHE and Adam's optimization function can classify four standard retinal macular pathology classes. The four classes include Age-Related Macular Degeneration (AMD), Choroidal Neovascularization (CNV), and Diabetic Macular Edema (DME), with an accuracy of 90.60. %, and a loss of 0.27.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信