改进BAT算法对MOOC学习者影响最大化的评估

K. Aggarwal, Anuja Arora
{"title":"改进BAT算法对MOOC学习者影响最大化的评估","authors":"K. Aggarwal, Anuja Arora","doi":"10.1145/3549206.3549297","DOIUrl":null,"url":null,"abstract":"Identification of a small group of individuals based on their maximal influence cascade is influence maximization. During the COVID-19 pandemic, discussion forums on the Massive Open Online Course (MOOC) platform have become a paramount interaction medium among learners, and the identification of influential learners evolved as a substantial research issue. In this research paper, an optimization function based on an independent cascade is established for the discussion forum influence maximization problem. A modified version of the BAT algorithm is proposed which memorizes the bad experience of the BAT. The proposed Modified algorithm helps the BAT to remember the worst location that has already been traversed for a reliable estimation in an optimized manner while exploring the best solution. Further, the performance of BAT and Modified BAT for influence maximization on the discussion forum network of a MOOC platform is evaluated which shows the excellent performance of modified BAT. Convergence graph for different populations on deviating probability depicts the effective performance of modified BAT over generic BAT algorithm.","PeriodicalId":199675,"journal":{"name":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of Modified BAT Algorithm for MOOC Learner Influence Maximization\",\"authors\":\"K. Aggarwal, Anuja Arora\",\"doi\":\"10.1145/3549206.3549297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of a small group of individuals based on their maximal influence cascade is influence maximization. During the COVID-19 pandemic, discussion forums on the Massive Open Online Course (MOOC) platform have become a paramount interaction medium among learners, and the identification of influential learners evolved as a substantial research issue. In this research paper, an optimization function based on an independent cascade is established for the discussion forum influence maximization problem. A modified version of the BAT algorithm is proposed which memorizes the bad experience of the BAT. The proposed Modified algorithm helps the BAT to remember the worst location that has already been traversed for a reliable estimation in an optimized manner while exploring the best solution. Further, the performance of BAT and Modified BAT for influence maximization on the discussion forum network of a MOOC platform is evaluated which shows the excellent performance of modified BAT. Convergence graph for different populations on deviating probability depicts the effective performance of modified BAT over generic BAT algorithm.\",\"PeriodicalId\":199675,\"journal\":{\"name\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549206.3549297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549206.3549297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据最大影响级联来识别一小群个体是影响最大化。在2019冠状病毒病大流行期间,大规模开放在线课程(MOOC)平台上的论坛已成为学习者之间最重要的互动媒介,识别有影响力的学习者已成为一个重要的研究问题。本文针对论坛影响力最大化问题,建立了一个基于独立级联的优化函数。提出了一种改进的BAT算法,该算法可以记忆BAT的不良经验。提出的改进算法有助于蝙蝠在探索最佳解的同时,以优化的方式记住已经遍历的最差位置,从而进行可靠的估计。进一步,在某MOOC平台的论坛网络上,对BAT和改进BAT在影响力最大化方面的性能进行了评价,结果表明改进BAT具有优异的性能。不同种群在偏离概率上的收敛图描述了改进BAT算法优于通用BAT算法的有效性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Modified BAT Algorithm for MOOC Learner Influence Maximization
Identification of a small group of individuals based on their maximal influence cascade is influence maximization. During the COVID-19 pandemic, discussion forums on the Massive Open Online Course (MOOC) platform have become a paramount interaction medium among learners, and the identification of influential learners evolved as a substantial research issue. In this research paper, an optimization function based on an independent cascade is established for the discussion forum influence maximization problem. A modified version of the BAT algorithm is proposed which memorizes the bad experience of the BAT. The proposed Modified algorithm helps the BAT to remember the worst location that has already been traversed for a reliable estimation in an optimized manner while exploring the best solution. Further, the performance of BAT and Modified BAT for influence maximization on the discussion forum network of a MOOC platform is evaluated which shows the excellent performance of modified BAT. Convergence graph for different populations on deviating probability depicts the effective performance of modified BAT over generic BAT algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信