{"title":"基于GMD准则的Reed-Solomon码的高效译码","authors":"K. Araki, M. Takada, M. Morii","doi":"10.1109/ISMVL.1992.186788","DOIUrl":null,"url":null,"abstract":"An efficient algorithm for GMD (generalized minimum distance) decoding is presented. It requires an algebraic errors-and-erasures decoding procedure to execute only one time. The Welch-Berlekamp iterative method is efficiently used to reduce the number of algebraic decoding procedures. A method for hardware implementation of this GMD decoding is shown.<<ETX>>","PeriodicalId":127091,"journal":{"name":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the efficient decoding of Reed-Solomon codes based on GMD criterion\",\"authors\":\"K. Araki, M. Takada, M. Morii\",\"doi\":\"10.1109/ISMVL.1992.186788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient algorithm for GMD (generalized minimum distance) decoding is presented. It requires an algebraic errors-and-erasures decoding procedure to execute only one time. The Welch-Berlekamp iterative method is efficiently used to reduce the number of algebraic decoding procedures. A method for hardware implementation of this GMD decoding is shown.<<ETX>>\",\"PeriodicalId\":127091,\"journal\":{\"name\":\"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1992.186788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1992.186788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the efficient decoding of Reed-Solomon codes based on GMD criterion
An efficient algorithm for GMD (generalized minimum distance) decoding is presented. It requires an algebraic errors-and-erasures decoding procedure to execute only one time. The Welch-Berlekamp iterative method is efficiently used to reduce the number of algebraic decoding procedures. A method for hardware implementation of this GMD decoding is shown.<>