一种基于噪声空间分解的方法,利用同步相量测量识别低频振荡

P. Tripathy, S. Srivastava, S. Singh
{"title":"一种基于噪声空间分解的方法,利用同步相量测量识别低频振荡","authors":"P. Tripathy, S. Srivastava, S. Singh","doi":"10.1109/PES.2010.5588166","DOIUrl":null,"url":null,"abstract":"This paper proposes a method based on noise space decomposition (NSD) for the identification of low frequency oscillations in power systems. The proposed method uses a median filter to reduce the variance of the estimated modes. The signal utilized for estimating the modes is the power signal obtained from phasor measurement units (PMUs). The results with the proposed method has been compared with an improved Prony based method on a test signal at different noise levels. Estimation of modes has also been carried out on a 2-area system using the proposed method.","PeriodicalId":177545,"journal":{"name":"IEEE PES General Meeting","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A noise space decomposition based method for identifying low frequency oscillations using synchro-phasor measurements\",\"authors\":\"P. Tripathy, S. Srivastava, S. Singh\",\"doi\":\"10.1109/PES.2010.5588166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method based on noise space decomposition (NSD) for the identification of low frequency oscillations in power systems. The proposed method uses a median filter to reduce the variance of the estimated modes. The signal utilized for estimating the modes is the power signal obtained from phasor measurement units (PMUs). The results with the proposed method has been compared with an improved Prony based method on a test signal at different noise levels. Estimation of modes has also been carried out on a 2-area system using the proposed method.\",\"PeriodicalId\":177545,\"journal\":{\"name\":\"IEEE PES General Meeting\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE PES General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2010.5588166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE PES General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2010.5588166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于噪声空间分解(NSD)的电力系统低频振荡识别方法。该方法使用中值滤波器来减小估计模态的方差。用于估计模态的信号是由相量测量单元(pmu)获得的功率信号。在不同噪声水平的测试信号上,将该方法的结果与改进的基于proony的方法进行了比较。利用所提出的方法对一个2区域系统进行了模态估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A noise space decomposition based method for identifying low frequency oscillations using synchro-phasor measurements
This paper proposes a method based on noise space decomposition (NSD) for the identification of low frequency oscillations in power systems. The proposed method uses a median filter to reduce the variance of the estimated modes. The signal utilized for estimating the modes is the power signal obtained from phasor measurement units (PMUs). The results with the proposed method has been compared with an improved Prony based method on a test signal at different noise levels. Estimation of modes has also been carried out on a 2-area system using the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信