用非多项式曲线表示实验数据的新进展

Biswajit Das
{"title":"用非多项式曲线表示实验数据的新进展","authors":"Biswajit Das","doi":"10.33665/ijear.2021.v08i01.003","DOIUrl":null,"url":null,"abstract":"Recently some studies have been made on representing numerical data on a pair of variables by some standard non-polynomial curves namely exponential curve, modified exponential curve, logistic curve, Makeham’s curve etc. in connection with the development of some formula/method, more convenient than the existing ones, of interpolation. This paper is based on a brief review on the recent developments of the methods of representing numerical data on a pair of variables by these non-polynomial curves along with their application in real data.","PeriodicalId":249119,"journal":{"name":"INTERNATIONAL JOURNAL OF ELECTRONICS AND APPLIED RESEARCH","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Developments on Representation of Experimental Data by Non-polynomial Curve\",\"authors\":\"Biswajit Das\",\"doi\":\"10.33665/ijear.2021.v08i01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently some studies have been made on representing numerical data on a pair of variables by some standard non-polynomial curves namely exponential curve, modified exponential curve, logistic curve, Makeham’s curve etc. in connection with the development of some formula/method, more convenient than the existing ones, of interpolation. This paper is based on a brief review on the recent developments of the methods of representing numerical data on a pair of variables by these non-polynomial curves along with their application in real data.\",\"PeriodicalId\":249119,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF ELECTRONICS AND APPLIED RESEARCH\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF ELECTRONICS AND APPLIED RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33665/ijear.2021.v08i01.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF ELECTRONICS AND APPLIED RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33665/ijear.2021.v08i01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对用指数曲线、修正指数曲线、logistic曲线、Makeham曲线等标准非多项式曲线来表示一对变量上的数值数据进行了一些研究,并发展了一些比现有插值更方便的公式/方法。本文简要介绍了用非多项式曲线表示一对变量上的数值数据的方法的最新进展及其在实际数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Developments on Representation of Experimental Data by Non-polynomial Curve
Recently some studies have been made on representing numerical data on a pair of variables by some standard non-polynomial curves namely exponential curve, modified exponential curve, logistic curve, Makeham’s curve etc. in connection with the development of some formula/method, more convenient than the existing ones, of interpolation. This paper is based on a brief review on the recent developments of the methods of representing numerical data on a pair of variables by these non-polynomial curves along with their application in real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信