肖特基势垒MOSFET超低功耗实时神经元的神经形态计算

Shubham Patil, J. Sakhuja, Ashutosh Kumar Singh, Anmol Biswas, V. Saraswat, Surinder Kumar, S. Lashkare, U. Ganguly
{"title":"肖特基势垒MOSFET超低功耗实时神经元的神经形态计算","authors":"Shubham Patil, J. Sakhuja, Ashutosh Kumar Singh, Anmol Biswas, V. Saraswat, Surinder Kumar, S. Lashkare, U. Ganguly","doi":"10.1109/EDTM55494.2023.10103118","DOIUrl":null,"url":null,"abstract":"Energy-efficient real-time synapses and neurons are essential to enable large-scale neuromorphic computing. In this paper, we propose and demonstrate the Schottky-Barrier MOSFET-based ultra-low power voltage-controlled current source to enable real-time neurons for neuromorphic computing. Schottky-Barrier MOSFET is fabricated on a Silicon-on-insulator platform with polycrystalline Silicon as the channel and Nickel/Platinum as the source/drain. The Poly-Si and Nickel make the back-to-back Schottky junction enabling ultra-low ON current required for energy-efficient neurons.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Schottky Barrier MOSFET Enabled Ultra-Low Power Real-Time Neuron for Neuromorphic Computing\",\"authors\":\"Shubham Patil, J. Sakhuja, Ashutosh Kumar Singh, Anmol Biswas, V. Saraswat, Surinder Kumar, S. Lashkare, U. Ganguly\",\"doi\":\"10.1109/EDTM55494.2023.10103118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficient real-time synapses and neurons are essential to enable large-scale neuromorphic computing. In this paper, we propose and demonstrate the Schottky-Barrier MOSFET-based ultra-low power voltage-controlled current source to enable real-time neurons for neuromorphic computing. Schottky-Barrier MOSFET is fabricated on a Silicon-on-insulator platform with polycrystalline Silicon as the channel and Nickel/Platinum as the source/drain. The Poly-Si and Nickel make the back-to-back Schottky junction enabling ultra-low ON current required for energy-efficient neurons.\",\"PeriodicalId\":418413,\"journal\":{\"name\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM55494.2023.10103118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10103118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效能的实时突触和神经元是实现大规模神经形态计算的必要条件。在本文中,我们提出并演示了基于肖特基势垒mosfet的超低功率压控电流源,使实时神经元能够用于神经形态计算。肖特基势垒MOSFET是在绝缘体上的硅平台上制造的,多晶硅作为通道,镍/铂作为源极/漏极。Poly-Si和镍制成背靠背的肖特基结,使节能神经元所需的超低ON电流成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Schottky Barrier MOSFET Enabled Ultra-Low Power Real-Time Neuron for Neuromorphic Computing
Energy-efficient real-time synapses and neurons are essential to enable large-scale neuromorphic computing. In this paper, we propose and demonstrate the Schottky-Barrier MOSFET-based ultra-low power voltage-controlled current source to enable real-time neurons for neuromorphic computing. Schottky-Barrier MOSFET is fabricated on a Silicon-on-insulator platform with polycrystalline Silicon as the channel and Nickel/Platinum as the source/drain. The Poly-Si and Nickel make the back-to-back Schottky junction enabling ultra-low ON current required for energy-efficient neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信