非高斯噪声环境下通信信道的自适应均衡

H. Kamel, Wael Badawy
{"title":"非高斯噪声环境下通信信道的自适应均衡","authors":"H. Kamel, Wael Badawy","doi":"10.1109/NEWCAS.2005.1496705","DOIUrl":null,"url":null,"abstract":"The subject of adaptive filters constitutes an important part of statistical signal processing. Adaptive filters are successfully applied in such diverse fields as communications, control, radar, sonar, and biomedical engineering. In this paper we study the use of the particle filter for adaptive equalization of a linear dispersive channel that produces (unknown) distortion. The performance of the adaptive filter is compared to that of least-mean-square (LMS) and recursive-least-square (RLS) algorithms. The main advantage of the particle filter when compared to other algorithms is its robustness when dealing with non-Gaussian noise. The particle filter showed better performance in convergence speed and root-mean-square (rms) error in case of low signal-to-noise ratio.","PeriodicalId":131387,"journal":{"name":"The 3rd International IEEE-NEWCAS Conference, 2005.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive equalization of a communication channel in a non-Gaussian noise environment\",\"authors\":\"H. Kamel, Wael Badawy\",\"doi\":\"10.1109/NEWCAS.2005.1496705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of adaptive filters constitutes an important part of statistical signal processing. Adaptive filters are successfully applied in such diverse fields as communications, control, radar, sonar, and biomedical engineering. In this paper we study the use of the particle filter for adaptive equalization of a linear dispersive channel that produces (unknown) distortion. The performance of the adaptive filter is compared to that of least-mean-square (LMS) and recursive-least-square (RLS) algorithms. The main advantage of the particle filter when compared to other algorithms is its robustness when dealing with non-Gaussian noise. The particle filter showed better performance in convergence speed and root-mean-square (rms) error in case of low signal-to-noise ratio.\",\"PeriodicalId\":131387,\"journal\":{\"name\":\"The 3rd International IEEE-NEWCAS Conference, 2005.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd International IEEE-NEWCAS Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2005.1496705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd International IEEE-NEWCAS Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2005.1496705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自适应滤波器是统计信号处理的一个重要组成部分。自适应滤波器已成功应用于通信、控制、雷达、声纳、生物医学工程等领域。在本文中,我们研究了使用粒子滤波器对产生(未知)失真的线性色散信道进行自适应均衡。将自适应滤波器的性能与最小均二乘(LMS)和递归最小二乘(RLS)算法进行了比较。与其他算法相比,粒子滤波的主要优点是在处理非高斯噪声时具有鲁棒性。在低信噪比情况下,粒子滤波在收敛速度和均方根误差方面表现出较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive equalization of a communication channel in a non-Gaussian noise environment
The subject of adaptive filters constitutes an important part of statistical signal processing. Adaptive filters are successfully applied in such diverse fields as communications, control, radar, sonar, and biomedical engineering. In this paper we study the use of the particle filter for adaptive equalization of a linear dispersive channel that produces (unknown) distortion. The performance of the adaptive filter is compared to that of least-mean-square (LMS) and recursive-least-square (RLS) algorithms. The main advantage of the particle filter when compared to other algorithms is its robustness when dealing with non-Gaussian noise. The particle filter showed better performance in convergence speed and root-mean-square (rms) error in case of low signal-to-noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信