Stojancho Tudjarski, Aleksandar Stankovski, Biljana Risteska Stojkoska, M. Gusev
{"title":"从连续心电信号到提取特征的机器学习模型和心律失常注释","authors":"Stojancho Tudjarski, Aleksandar Stankovski, Biljana Risteska Stojkoska, M. Gusev","doi":"10.1109/TELFOR56187.2022.9983663","DOIUrl":null,"url":null,"abstract":"This paper describes the process of transforming an ECG signal as a continuous stream of numbers representing measured electrical voltages between the ECG electrodes into an output indicating the existence of arrhythmia. The ECG data stream is a structured array of converted analog signal values to digital data. Although this stream uses a continuous structure of numbers within a given range that depends on the bit resolution during conversion, it is still unstructured as a representation of the appearance of arrhythmia since it does not contain information about detected arrhythmia. This paper presents how to process ECG data, detect heartbeat annotations, and calculate various parameters for tabular-based data with a fixed number of columns to be used as input into ML-based algorithms. Our use case addresses an ML algorithm to detect atrial fibrillation arrhythmia, as an irregular heart rhythm. Practically a set of numbers in the ECG samples, which do not have structured arrhythmia annotations, is transformed into structured annotations. Experiments are conducted on the well-known ECG benchmark MIT-BIH Arrhythmia Database. The input data is resampled from 360 Hz to 125 Hz signal, and a signal processing algorithm is used to detect heartbeats, extracting a fixed set of features, and systematically forwarded to the feature selection ML methodologies to obtain atrial fibrillation annotations.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"From Continuous ECG Signals to Extracted Features for Machine Learning Models and Arrhythmia Annotations\",\"authors\":\"Stojancho Tudjarski, Aleksandar Stankovski, Biljana Risteska Stojkoska, M. Gusev\",\"doi\":\"10.1109/TELFOR56187.2022.9983663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the process of transforming an ECG signal as a continuous stream of numbers representing measured electrical voltages between the ECG electrodes into an output indicating the existence of arrhythmia. The ECG data stream is a structured array of converted analog signal values to digital data. Although this stream uses a continuous structure of numbers within a given range that depends on the bit resolution during conversion, it is still unstructured as a representation of the appearance of arrhythmia since it does not contain information about detected arrhythmia. This paper presents how to process ECG data, detect heartbeat annotations, and calculate various parameters for tabular-based data with a fixed number of columns to be used as input into ML-based algorithms. Our use case addresses an ML algorithm to detect atrial fibrillation arrhythmia, as an irregular heart rhythm. Practically a set of numbers in the ECG samples, which do not have structured arrhythmia annotations, is transformed into structured annotations. Experiments are conducted on the well-known ECG benchmark MIT-BIH Arrhythmia Database. The input data is resampled from 360 Hz to 125 Hz signal, and a signal processing algorithm is used to detect heartbeats, extracting a fixed set of features, and systematically forwarded to the feature selection ML methodologies to obtain atrial fibrillation annotations.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Continuous ECG Signals to Extracted Features for Machine Learning Models and Arrhythmia Annotations
This paper describes the process of transforming an ECG signal as a continuous stream of numbers representing measured electrical voltages between the ECG electrodes into an output indicating the existence of arrhythmia. The ECG data stream is a structured array of converted analog signal values to digital data. Although this stream uses a continuous structure of numbers within a given range that depends on the bit resolution during conversion, it is still unstructured as a representation of the appearance of arrhythmia since it does not contain information about detected arrhythmia. This paper presents how to process ECG data, detect heartbeat annotations, and calculate various parameters for tabular-based data with a fixed number of columns to be used as input into ML-based algorithms. Our use case addresses an ML algorithm to detect atrial fibrillation arrhythmia, as an irregular heart rhythm. Practically a set of numbers in the ECG samples, which do not have structured arrhythmia annotations, is transformed into structured annotations. Experiments are conducted on the well-known ECG benchmark MIT-BIH Arrhythmia Database. The input data is resampled from 360 Hz to 125 Hz signal, and a signal processing algorithm is used to detect heartbeats, extracting a fixed set of features, and systematically forwarded to the feature selection ML methodologies to obtain atrial fibrillation annotations.