间歇连接传感器网络的信息新鲜度优化

Howard Luu, Hung L. Ngo, Bin Tang, M. Beheshti
{"title":"间歇连接传感器网络的信息新鲜度优化","authors":"Howard Luu, Hung L. Ngo, Bin Tang, M. Beheshti","doi":"10.1145/3491315.3491338","DOIUrl":null,"url":null,"abstract":"We study how to maximize information freshness in intermittently connected sensor networks (ICSNs). ICSNs are emerging sensing applications and systems that are deployed in challenging environments (e.g., underwater exploration). Due to the inaccessibility of the environments, the newly generated data in ICSNs must be stored inside the network before uploading opportunities (e.g., autonomous underwater vehicles (AUVs)) become available. How to accurately quantify and effectively achieve the freshness of information stored in ICSNs pose a new challenge. We propose an algorithmic framework, referred to as MIF: maximization of information freshness, to maximize the freshness of data packets stored in ICSNs while incurring a minimum amount of energy cost in this process. We first formulate an integer linear programming (ILP) problem to solve MIF optimally. We then propose a more time-efficient greedy algorithm. Finally, simulation results show that our algorithms achieve information freshness for ICSNs under different network parameters while incurring minimum energy consumptions.","PeriodicalId":191580,"journal":{"name":"Proceedings of the 15th International Conference on Underwater Networks & Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIF: Optimizing Information Freshness in Intermittently Connected Sensor Networks\",\"authors\":\"Howard Luu, Hung L. Ngo, Bin Tang, M. Beheshti\",\"doi\":\"10.1145/3491315.3491338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study how to maximize information freshness in intermittently connected sensor networks (ICSNs). ICSNs are emerging sensing applications and systems that are deployed in challenging environments (e.g., underwater exploration). Due to the inaccessibility of the environments, the newly generated data in ICSNs must be stored inside the network before uploading opportunities (e.g., autonomous underwater vehicles (AUVs)) become available. How to accurately quantify and effectively achieve the freshness of information stored in ICSNs pose a new challenge. We propose an algorithmic framework, referred to as MIF: maximization of information freshness, to maximize the freshness of data packets stored in ICSNs while incurring a minimum amount of energy cost in this process. We first formulate an integer linear programming (ILP) problem to solve MIF optimally. We then propose a more time-efficient greedy algorithm. Finally, simulation results show that our algorithms achieve information freshness for ICSNs under different network parameters while incurring minimum energy consumptions.\",\"PeriodicalId\":191580,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491315.3491338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491315.3491338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了如何在间歇连接的传感器网络(ICSNs)中最大化信息的新鲜度。ICSNs是新兴的传感应用和系统,部署在具有挑战性的环境中(例如,水下勘探)。由于环境的不可访问性,ICSNs中新生成的数据必须在上传机会(例如自主水下航行器(auv))可用之前存储在网络中。如何准确量化和有效地实现信息存储的新鲜度是一个新的挑战。我们提出了一个算法框架,称为MIF:信息新鲜度最大化,以最大限度地提高存储在ICSNs中的数据包的新鲜度,同时在此过程中产生最小的能量成本。我们首先提出一个整数线性规划(ILP)问题来最优求解MIF。然后我们提出了一个更省时的贪婪算法。最后,仿真结果表明,我们的算法在不同网络参数下均能实现ICSNs的信息新鲜度,且能耗最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIF: Optimizing Information Freshness in Intermittently Connected Sensor Networks
We study how to maximize information freshness in intermittently connected sensor networks (ICSNs). ICSNs are emerging sensing applications and systems that are deployed in challenging environments (e.g., underwater exploration). Due to the inaccessibility of the environments, the newly generated data in ICSNs must be stored inside the network before uploading opportunities (e.g., autonomous underwater vehicles (AUVs)) become available. How to accurately quantify and effectively achieve the freshness of information stored in ICSNs pose a new challenge. We propose an algorithmic framework, referred to as MIF: maximization of information freshness, to maximize the freshness of data packets stored in ICSNs while incurring a minimum amount of energy cost in this process. We first formulate an integer linear programming (ILP) problem to solve MIF optimally. We then propose a more time-efficient greedy algorithm. Finally, simulation results show that our algorithms achieve information freshness for ICSNs under different network parameters while incurring minimum energy consumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信