通过实验分析,评价了印刷电路板结构对四种封装类型在自然对流和强制对流条件下热性能的影响

J. Lohan, P. Tiilikka, P. Rodgers, Carl-Magnus Fager, J. Rantala
{"title":"通过实验分析,评价了印刷电路板结构对四种封装类型在自然对流和强制对流条件下热性能的影响","authors":"J. Lohan, P. Tiilikka, P. Rodgers, Carl-Magnus Fager, J. Rantala","doi":"10.1109/ITHERM.2000.866194","DOIUrl":null,"url":null,"abstract":"As the functionality of electronic systems increase, so does the complexity of printed circuit board (PCB) design, with greater component packing densities requiring additional internal signal, power and ground layers to facilitate interconnection. The extra copper content introduced increases PCB thermal conductivity and heat spreading capability, which can strongly influence component operating temperature. Therefore, this experimental study sought to quantify the impact of PCB construction on component operating temperature and relate this sensitivity to the package design, PCB effective conductivity and convective environment. This was achieved by measuring the steady state thermal performance of four package types (PSO20: heat slug up, PSO20: heat slug down, LFBGA80 and SBGA352) on up to six different, single-component thermal test PCBs in the standard natural and forced convection environments. Test velocities ranged from 0.5 m/s to 5.0 m/s and all test components contained a thermal test die. Measurements of junction temperature and component-PCB surface temperature distributions are both presented for power dissipation levels within the range 0.5 to 6.0 Watts. The study includes the low and high conductivity JEDEC standard, FR4-based test PCBs and typical application boards. As each PCB had a different internal structure and effective thermal conductivity, this study highlights the sensitivity of component operating temperature to the PCB, provides benchmark data for validating numerical models, and helps one assess the applicability of standard junction-to-air thermal resistance (/spl theta//sub JA/ and /spl theta//sub JMA/), as well as both junction-to-board (/spl Psi//sub JB/) and junction-to-top (/spl Psi//sub JT/) thermal characterisation parameters for design purposes on nonstandard PCBs.","PeriodicalId":201262,"journal":{"name":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Using experimental analysis to evaluate the influence of printed circuit board construction on the thermal performance of four package types in both natural and forced convection\",\"authors\":\"J. Lohan, P. Tiilikka, P. Rodgers, Carl-Magnus Fager, J. Rantala\",\"doi\":\"10.1109/ITHERM.2000.866194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the functionality of electronic systems increase, so does the complexity of printed circuit board (PCB) design, with greater component packing densities requiring additional internal signal, power and ground layers to facilitate interconnection. The extra copper content introduced increases PCB thermal conductivity and heat spreading capability, which can strongly influence component operating temperature. Therefore, this experimental study sought to quantify the impact of PCB construction on component operating temperature and relate this sensitivity to the package design, PCB effective conductivity and convective environment. This was achieved by measuring the steady state thermal performance of four package types (PSO20: heat slug up, PSO20: heat slug down, LFBGA80 and SBGA352) on up to six different, single-component thermal test PCBs in the standard natural and forced convection environments. Test velocities ranged from 0.5 m/s to 5.0 m/s and all test components contained a thermal test die. Measurements of junction temperature and component-PCB surface temperature distributions are both presented for power dissipation levels within the range 0.5 to 6.0 Watts. The study includes the low and high conductivity JEDEC standard, FR4-based test PCBs and typical application boards. As each PCB had a different internal structure and effective thermal conductivity, this study highlights the sensitivity of component operating temperature to the PCB, provides benchmark data for validating numerical models, and helps one assess the applicability of standard junction-to-air thermal resistance (/spl theta//sub JA/ and /spl theta//sub JMA/), as well as both junction-to-board (/spl Psi//sub JB/) and junction-to-top (/spl Psi//sub JT/) thermal characterisation parameters for design purposes on nonstandard PCBs.\",\"PeriodicalId\":201262,\"journal\":{\"name\":\"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2000.866194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2000.866194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

随着电子系统功能的增加,印刷电路板(PCB)设计的复杂性也在增加,更大的组件封装密度需要额外的内部信号、电源和接地层来促进互连。引入的额外铜含量增加了PCB的导热性和散热能力,这可以强烈影响组件的工作温度。因此,本实验研究试图量化PCB结构对元件工作温度的影响,并将这种敏感性与封装设计、PCB有效电导率和对流环境联系起来。这是通过测量四种封装类型(PSO20:热段塞上升,PSO20:热段塞下降,LFBGA80和SBGA352)在六种不同的单组分热测试pcb上在标准自然和强制对流环境下的稳态热性能来实现的。测试速度范围从0.5米/秒到5.0米/秒,所有测试组件都包含一个热测试模具。结温和组件- pcb表面温度分布的测量都提出了0.5至6.0瓦范围内的功耗水平。研究包括低电导率和高电导率JEDEC标准,基于fr4的测试pcb和典型应用板。由于每个PCB具有不同的内部结构和有效导热系数,因此本研究突出了组件工作温度对PCB的敏感性,为验证数值模型提供了基准数据,并有助于评估标准结对空气热阻(/spl theta//sub JA/和/spl theta//sub JMA/)的适用性。以及用于非标准pcb设计目的的连接到板(/spl Psi//sub JB/)和连接到顶(/spl Psi//sub JT/)热特性参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using experimental analysis to evaluate the influence of printed circuit board construction on the thermal performance of four package types in both natural and forced convection
As the functionality of electronic systems increase, so does the complexity of printed circuit board (PCB) design, with greater component packing densities requiring additional internal signal, power and ground layers to facilitate interconnection. The extra copper content introduced increases PCB thermal conductivity and heat spreading capability, which can strongly influence component operating temperature. Therefore, this experimental study sought to quantify the impact of PCB construction on component operating temperature and relate this sensitivity to the package design, PCB effective conductivity and convective environment. This was achieved by measuring the steady state thermal performance of four package types (PSO20: heat slug up, PSO20: heat slug down, LFBGA80 and SBGA352) on up to six different, single-component thermal test PCBs in the standard natural and forced convection environments. Test velocities ranged from 0.5 m/s to 5.0 m/s and all test components contained a thermal test die. Measurements of junction temperature and component-PCB surface temperature distributions are both presented for power dissipation levels within the range 0.5 to 6.0 Watts. The study includes the low and high conductivity JEDEC standard, FR4-based test PCBs and typical application boards. As each PCB had a different internal structure and effective thermal conductivity, this study highlights the sensitivity of component operating temperature to the PCB, provides benchmark data for validating numerical models, and helps one assess the applicability of standard junction-to-air thermal resistance (/spl theta//sub JA/ and /spl theta//sub JMA/), as well as both junction-to-board (/spl Psi//sub JB/) and junction-to-top (/spl Psi//sub JT/) thermal characterisation parameters for design purposes on nonstandard PCBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信