三维集成电路SOC芯片RAM内置自修复电路的分配

Chih-Sheng Hou, Jin-Fu Li
{"title":"三维集成电路SOC芯片RAM内置自修复电路的分配","authors":"Chih-Sheng Hou, Jin-Fu Li","doi":"10.1109/VTS.2013.6548940","DOIUrl":null,"url":null,"abstract":"A modern system-on-chip (SOC) may become one of the dies of a three-dimensional (3D) IC using through-silicon via (TSV). Built-in self-repair (BISR) techniques have been widely used to improve the yield of RAMs in a SOC. This paper proposes a memory BISR allocation scheme to allocate shared BISR circuits for RAMs in a SOC die such that the test and repair time and the area of BISR circuits are minimized. To minimize the test and repair time of RAMs in the pre-bond and post-bond test phases, a test scheduling engine is used to determine the pre-bond and post-bond test sequences of RAMs under the corresponding test power constraints. Then, a BISR-circuit minimization algorithm is proposed to reduce the number of required shared BISR circuits for the RAMs under the constraints of pre-bond and post-bond test sequences and distance between the BISR circuit and served RAMs. Simulation results show that in comparison with a dedicated BISR scheme (i.e., each RAM has a self-contained BISR circuit), 35% area reduction can be achieved by the shared BISR scheme planned by the proposed allocation technique under lmm distance constraint, and 500mW and 600mW pre-bond and post-bond test power constraints, respectively.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Allocation of RAM built-in self-repair circuits for SOC dies of 3D ICs\",\"authors\":\"Chih-Sheng Hou, Jin-Fu Li\",\"doi\":\"10.1109/VTS.2013.6548940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modern system-on-chip (SOC) may become one of the dies of a three-dimensional (3D) IC using through-silicon via (TSV). Built-in self-repair (BISR) techniques have been widely used to improve the yield of RAMs in a SOC. This paper proposes a memory BISR allocation scheme to allocate shared BISR circuits for RAMs in a SOC die such that the test and repair time and the area of BISR circuits are minimized. To minimize the test and repair time of RAMs in the pre-bond and post-bond test phases, a test scheduling engine is used to determine the pre-bond and post-bond test sequences of RAMs under the corresponding test power constraints. Then, a BISR-circuit minimization algorithm is proposed to reduce the number of required shared BISR circuits for the RAMs under the constraints of pre-bond and post-bond test sequences and distance between the BISR circuit and served RAMs. Simulation results show that in comparison with a dedicated BISR scheme (i.e., each RAM has a self-contained BISR circuit), 35% area reduction can be achieved by the shared BISR scheme planned by the proposed allocation technique under lmm distance constraint, and 500mW and 600mW pre-bond and post-bond test power constraints, respectively.\",\"PeriodicalId\":138435,\"journal\":{\"name\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2013.6548940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

现代片上系统(SOC)可能成为使用通硅通孔(TSV)的三维(3D)集成电路的模具之一。内置自修复(BISR)技术被广泛用于提高SOC中ram的产率。本文提出了一种内存BISR分配方案,为SOC芯片中的ram分配共享BISR电路,从而使BISR电路的测试维修时间和面积最小。为了最大限度地减少ram在粘接前和粘接后测试阶段的测试和维修时间,使用测试调度引擎确定ram在相应测试功率约束下的粘接前和粘接后测试顺序。然后,在键前和键后测试序列以及BISR电路与服务的ram之间的距离约束下,提出了一种BISR电路最小化算法,以减少ram所需的共享BISR电路数量。仿真结果表明,与专用BISR方案(即每个RAM都有一个独立的BISR电路)相比,在lmm距离约束下,在500mW和600mW键前和键后测试功率约束下,所提出的分配技术规划的共享BISR方案可实现35%的面积缩减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Allocation of RAM built-in self-repair circuits for SOC dies of 3D ICs
A modern system-on-chip (SOC) may become one of the dies of a three-dimensional (3D) IC using through-silicon via (TSV). Built-in self-repair (BISR) techniques have been widely used to improve the yield of RAMs in a SOC. This paper proposes a memory BISR allocation scheme to allocate shared BISR circuits for RAMs in a SOC die such that the test and repair time and the area of BISR circuits are minimized. To minimize the test and repair time of RAMs in the pre-bond and post-bond test phases, a test scheduling engine is used to determine the pre-bond and post-bond test sequences of RAMs under the corresponding test power constraints. Then, a BISR-circuit minimization algorithm is proposed to reduce the number of required shared BISR circuits for the RAMs under the constraints of pre-bond and post-bond test sequences and distance between the BISR circuit and served RAMs. Simulation results show that in comparison with a dedicated BISR scheme (i.e., each RAM has a self-contained BISR circuit), 35% area reduction can be achieved by the shared BISR scheme planned by the proposed allocation technique under lmm distance constraint, and 500mW and 600mW pre-bond and post-bond test power constraints, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信