全波分析图像线

M. Lucido, G. Panariello, F. Schettino
{"title":"全波分析图像线","authors":"M. Lucido, G. Panariello, F. Schettino","doi":"10.1109/MWSYM.2007.380029","DOIUrl":null,"url":null,"abstract":"Aim of this work is the analysis of natural modes of image lines. By introducing equivalent surface electric and magnetic currents, the boundary integral equations are obtained. The Galerkin method in the spectral domain with expansion functions factorizing the dominant edge behaviors of the unknowns is applied to reduce the system of integral equations to symmetric infinite-matrix equations the elements of which are single integrals that can be efficiently evaluated. In such a way the integral operator is discretized and analytically regularized thus leading to a fast converging method.","PeriodicalId":213749,"journal":{"name":"2007 IEEE/MTT-S International Microwave Symposium","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full wave analysis of image lines\",\"authors\":\"M. Lucido, G. Panariello, F. Schettino\",\"doi\":\"10.1109/MWSYM.2007.380029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim of this work is the analysis of natural modes of image lines. By introducing equivalent surface electric and magnetic currents, the boundary integral equations are obtained. The Galerkin method in the spectral domain with expansion functions factorizing the dominant edge behaviors of the unknowns is applied to reduce the system of integral equations to symmetric infinite-matrix equations the elements of which are single integrals that can be efficiently evaluated. In such a way the integral operator is discretized and analytically regularized thus leading to a fast converging method.\",\"PeriodicalId\":213749,\"journal\":{\"name\":\"2007 IEEE/MTT-S International Microwave Symposium\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/MTT-S International Microwave Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2007.380029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2007.380029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是分析图像线条的自然模式。通过引入等效的表面电、磁电流,得到了边界积分方程。利用利用展开式函数分解未知数优势边行为的谱域伽辽金方法,将积分方程组简化为可有效求值的单积分对称无穷矩阵方程组。在这种方法中,积分算子被离散化和解析正则化,从而导致一种快速收敛的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full wave analysis of image lines
Aim of this work is the analysis of natural modes of image lines. By introducing equivalent surface electric and magnetic currents, the boundary integral equations are obtained. The Galerkin method in the spectral domain with expansion functions factorizing the dominant edge behaviors of the unknowns is applied to reduce the system of integral equations to symmetric infinite-matrix equations the elements of which are single integrals that can be efficiently evaluated. In such a way the integral operator is discretized and analytically regularized thus leading to a fast converging method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信