{"title":"动态均值方差资产配置","authors":"Suleyman Basak, G. Chabakauri","doi":"10.2139/ssrn.965926","DOIUrl":null,"url":null,"abstract":"Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in the explicit computation of portfolios. We solve the problem by explicitly recognizing the time-inconsistency of the mean-variance criterion and deriving a recursive representation for it, which makes dynamic programming applicable. We further show that our time-consistent solution is generically different from the pre-commitment solutions in the extant literature, which maximize the mean-variance criterion at an initial date and which the investor commits to follow despite incentives to deviate. We illustrate the usefulness of our analysis by explicitly computing dynamic mean-variance portfolios under various stochastic investment opportunities in a straightforward way, which does not involve solving a Hamilton-Jacobi-Bellman differential equation. A calibration exercise shows that the mean-variance hedging demands may comprise a significant fraction of the investor's total risky asset demand.","PeriodicalId":355236,"journal":{"name":"AFA 2009 San Francisco Meetings (Archive)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"535","resultStr":"{\"title\":\"Dynamic Mean-Variance Asset Allocation\",\"authors\":\"Suleyman Basak, G. Chabakauri\",\"doi\":\"10.2139/ssrn.965926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in the explicit computation of portfolios. We solve the problem by explicitly recognizing the time-inconsistency of the mean-variance criterion and deriving a recursive representation for it, which makes dynamic programming applicable. We further show that our time-consistent solution is generically different from the pre-commitment solutions in the extant literature, which maximize the mean-variance criterion at an initial date and which the investor commits to follow despite incentives to deviate. We illustrate the usefulness of our analysis by explicitly computing dynamic mean-variance portfolios under various stochastic investment opportunities in a straightforward way, which does not involve solving a Hamilton-Jacobi-Bellman differential equation. A calibration exercise shows that the mean-variance hedging demands may comprise a significant fraction of the investor's total risky asset demand.\",\"PeriodicalId\":355236,\"journal\":{\"name\":\"AFA 2009 San Francisco Meetings (Archive)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"535\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AFA 2009 San Francisco Meetings (Archive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.965926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFA 2009 San Francisco Meetings (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.965926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in the explicit computation of portfolios. We solve the problem by explicitly recognizing the time-inconsistency of the mean-variance criterion and deriving a recursive representation for it, which makes dynamic programming applicable. We further show that our time-consistent solution is generically different from the pre-commitment solutions in the extant literature, which maximize the mean-variance criterion at an initial date and which the investor commits to follow despite incentives to deviate. We illustrate the usefulness of our analysis by explicitly computing dynamic mean-variance portfolios under various stochastic investment opportunities in a straightforward way, which does not involve solving a Hamilton-Jacobi-Bellman differential equation. A calibration exercise shows that the mean-variance hedging demands may comprise a significant fraction of the investor's total risky asset demand.