深水气田开发水合物抑制作用研究

Yi Hualei, Yun Hao, Xiaohong Zhou
{"title":"深水气田开发水合物抑制作用研究","authors":"Yi Hualei, Yun Hao, Xiaohong Zhou","doi":"10.1115/omae2019-95177","DOIUrl":null,"url":null,"abstract":"\n For deepwater subsea tie-back gas field development, hydrate tends to be formed in deepwater subsea production system and gas pipeline due to high pressure and low temperature. Based on the gas field A development, this paper studies the selection of hydrate inhibitors and injection points, i.e. different injection points with different inhibitors. Transient and steady flow simulations are performed using the OLGA software widely used for multiphase flow pipeline study in the world. The produced water flow rate affects the hydrate inhibition in case of well opening, including cases of different times with different water temperatures. This paper presents the calculation of the maximum inhibitor injection rate in the subsea pipeline by taking the whole production years into consideration. The measures on hydrate remediation are taken by quickly relieving the subsea pipeline pressure from wellheads and the platform according to different hydrate locations. Now more and more deepwater gas fields are developed in South China Sea and around the world. The experience obtained from the gas field A development will benefit the hydrate inhibition for future deepwater gas field development.","PeriodicalId":190268,"journal":{"name":"Volume 5A: Pipelines, Risers, and Subsea Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Hydrate Inhibition for Deepwater Gas Field Development\",\"authors\":\"Yi Hualei, Yun Hao, Xiaohong Zhou\",\"doi\":\"10.1115/omae2019-95177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n For deepwater subsea tie-back gas field development, hydrate tends to be formed in deepwater subsea production system and gas pipeline due to high pressure and low temperature. Based on the gas field A development, this paper studies the selection of hydrate inhibitors and injection points, i.e. different injection points with different inhibitors. Transient and steady flow simulations are performed using the OLGA software widely used for multiphase flow pipeline study in the world. The produced water flow rate affects the hydrate inhibition in case of well opening, including cases of different times with different water temperatures. This paper presents the calculation of the maximum inhibitor injection rate in the subsea pipeline by taking the whole production years into consideration. The measures on hydrate remediation are taken by quickly relieving the subsea pipeline pressure from wellheads and the platform according to different hydrate locations. Now more and more deepwater gas fields are developed in South China Sea and around the world. The experience obtained from the gas field A development will benefit the hydrate inhibition for future deepwater gas field development.\",\"PeriodicalId\":190268,\"journal\":{\"name\":\"Volume 5A: Pipelines, Risers, and Subsea Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: Pipelines, Risers, and Subsea Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-95177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在深水海底回接气田开发中,由于高压低温,深水海底生产系统和输气管道容易形成水合物。本文以A气田开发为例,研究水合物抑制剂和注入点的选择,即不同的注入点使用不同的抑制剂。采用国际上广泛应用于多相流管道研究的OLGA软件进行了瞬态和定常流动模拟。在开井情况下,包括不同时间、不同水温的情况下,采出水流量影响水合物抑制作用。本文提出了考虑整个生产年限的海底管道抑制剂最大注入速率的计算方法。水合物的修复措施是根据水合物的不同位置,从井口和平台上快速释放海底管道压力。目前,在南海和世界范围内,越来越多的深水气田被开发出来。从A气田开发中获得的经验将有利于未来深水气田开发的水合物抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Hydrate Inhibition for Deepwater Gas Field Development
For deepwater subsea tie-back gas field development, hydrate tends to be formed in deepwater subsea production system and gas pipeline due to high pressure and low temperature. Based on the gas field A development, this paper studies the selection of hydrate inhibitors and injection points, i.e. different injection points with different inhibitors. Transient and steady flow simulations are performed using the OLGA software widely used for multiphase flow pipeline study in the world. The produced water flow rate affects the hydrate inhibition in case of well opening, including cases of different times with different water temperatures. This paper presents the calculation of the maximum inhibitor injection rate in the subsea pipeline by taking the whole production years into consideration. The measures on hydrate remediation are taken by quickly relieving the subsea pipeline pressure from wellheads and the platform according to different hydrate locations. Now more and more deepwater gas fields are developed in South China Sea and around the world. The experience obtained from the gas field A development will benefit the hydrate inhibition for future deepwater gas field development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信