基于贝叶斯网络的线性和非线性回声消除方法

R. Maas, Christian Huemmer, A. Schwarz, Christian Hofmann, Walter Kellermann
{"title":"基于贝叶斯网络的线性和非线性回声消除方法","authors":"R. Maas, Christian Huemmer, A. Schwarz, Christian Hofmann, Walter Kellermann","doi":"10.1109/ChinaSIP.2014.6889292","DOIUrl":null,"url":null,"abstract":"In this contribution, we provide a new derivation of the normalized least mean square (NLMS) algorithm from a machine learning perspective. By applying the inference rules of Bayesian networks to a linear observation model, the NLMS can be shown to arise as a modification of the Kalman filter equations. Based on a nonlinear observation model, we exemplify the benefit of the Bayesian point of view by employing the technique of particle filtering to realize a tractable algorithm for nonlinear acoustic echo cancellation. Experiments carried out on real smartphone recordings reveal the remarkable performance of the new approach.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Bayesian network viewon linear and nonlinear acoustic echo cancellation\",\"authors\":\"R. Maas, Christian Huemmer, A. Schwarz, Christian Hofmann, Walter Kellermann\",\"doi\":\"10.1109/ChinaSIP.2014.6889292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we provide a new derivation of the normalized least mean square (NLMS) algorithm from a machine learning perspective. By applying the inference rules of Bayesian networks to a linear observation model, the NLMS can be shown to arise as a modification of the Kalman filter equations. Based on a nonlinear observation model, we exemplify the benefit of the Bayesian point of view by employing the technique of particle filtering to realize a tractable algorithm for nonlinear acoustic echo cancellation. Experiments carried out on real smartphone recordings reveal the remarkable performance of the new approach.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在这篇贡献中,我们从机器学习的角度提供了一种新的归一化最小均方(NLMS)算法的推导。通过将贝叶斯网络的推理规则应用于线性观测模型,NLMS可以显示为卡尔曼滤波方程的修改而产生。基于非线性观测模型,采用粒子滤波技术实现了一种易于处理的非线性声回波消除算法,充分发挥了贝叶斯理论的优越性。在真实的智能手机录音上进行的实验显示了新方法的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian network viewon linear and nonlinear acoustic echo cancellation
In this contribution, we provide a new derivation of the normalized least mean square (NLMS) algorithm from a machine learning perspective. By applying the inference rules of Bayesian networks to a linear observation model, the NLMS can be shown to arise as a modification of the Kalman filter equations. Based on a nonlinear observation model, we exemplify the benefit of the Bayesian point of view by employing the technique of particle filtering to realize a tractable algorithm for nonlinear acoustic echo cancellation. Experiments carried out on real smartphone recordings reveal the remarkable performance of the new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信