R. Maas, Christian Huemmer, A. Schwarz, Christian Hofmann, Walter Kellermann
{"title":"基于贝叶斯网络的线性和非线性回声消除方法","authors":"R. Maas, Christian Huemmer, A. Schwarz, Christian Hofmann, Walter Kellermann","doi":"10.1109/ChinaSIP.2014.6889292","DOIUrl":null,"url":null,"abstract":"In this contribution, we provide a new derivation of the normalized least mean square (NLMS) algorithm from a machine learning perspective. By applying the inference rules of Bayesian networks to a linear observation model, the NLMS can be shown to arise as a modification of the Kalman filter equations. Based on a nonlinear observation model, we exemplify the benefit of the Bayesian point of view by employing the technique of particle filtering to realize a tractable algorithm for nonlinear acoustic echo cancellation. Experiments carried out on real smartphone recordings reveal the remarkable performance of the new approach.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Bayesian network viewon linear and nonlinear acoustic echo cancellation\",\"authors\":\"R. Maas, Christian Huemmer, A. Schwarz, Christian Hofmann, Walter Kellermann\",\"doi\":\"10.1109/ChinaSIP.2014.6889292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we provide a new derivation of the normalized least mean square (NLMS) algorithm from a machine learning perspective. By applying the inference rules of Bayesian networks to a linear observation model, the NLMS can be shown to arise as a modification of the Kalman filter equations. Based on a nonlinear observation model, we exemplify the benefit of the Bayesian point of view by employing the technique of particle filtering to realize a tractable algorithm for nonlinear acoustic echo cancellation. Experiments carried out on real smartphone recordings reveal the remarkable performance of the new approach.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Bayesian network viewon linear and nonlinear acoustic echo cancellation
In this contribution, we provide a new derivation of the normalized least mean square (NLMS) algorithm from a machine learning perspective. By applying the inference rules of Bayesian networks to a linear observation model, the NLMS can be shown to arise as a modification of the Kalman filter equations. Based on a nonlinear observation model, we exemplify the benefit of the Bayesian point of view by employing the technique of particle filtering to realize a tractable algorithm for nonlinear acoustic echo cancellation. Experiments carried out on real smartphone recordings reveal the remarkable performance of the new approach.