基于KNN算法和决策树的SOM映射电能质量参数预测

I. Jahan, F. Mohamed, Vojtech Blazek, L. Prokop, S. Mišák, Václav Snášel
{"title":"基于KNN算法和决策树的SOM映射电能质量参数预测","authors":"I. Jahan, F. Mohamed, Vojtech Blazek, L. Prokop, S. Mišák, Václav Snášel","doi":"10.1109/EPE58302.2023.10149269","DOIUrl":null,"url":null,"abstract":"This study tested four forecasting models combined with 3x3 SOM maps for predicting power quality parameters (PQPs) named decision tree (DT), KNN algorithm, bagging decision tree (BGDT), and boosting decision tree (BODT). The input variables used are weather conditions (air temperature, wind speed, air pressure, Ultraviolet, solar irradiance) with states of four types of home appliances (AC heating, light, fridge, TV) represented by one decimal number. Target Outputs are Power Voltage (U), total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), power factor (PF), and power load (PL). The experiments were carried out in two stages: in the first stage, clustering dataset using self-organizing maps (SOM), 3x3 SOM in total nine hexagon nodes was used. In the second stage, inside each node builds four forecasting models: decision tree (DT), K-Nearest Neighbor(KNN) algorithm, bagging decision tree (BGDT), and boosting decision tree (BODT). Root Mean Square Error (RMSE) was used for evaluating the performance of studied models.","PeriodicalId":210548,"journal":{"name":"2023 23rd International Scientific Conference on Electric Power Engineering (EPE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Quality Parameters Forecasting Based on SOM Maps with KNN Algorithm and Decision Tree\",\"authors\":\"I. Jahan, F. Mohamed, Vojtech Blazek, L. Prokop, S. Mišák, Václav Snášel\",\"doi\":\"10.1109/EPE58302.2023.10149269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study tested four forecasting models combined with 3x3 SOM maps for predicting power quality parameters (PQPs) named decision tree (DT), KNN algorithm, bagging decision tree (BGDT), and boosting decision tree (BODT). The input variables used are weather conditions (air temperature, wind speed, air pressure, Ultraviolet, solar irradiance) with states of four types of home appliances (AC heating, light, fridge, TV) represented by one decimal number. Target Outputs are Power Voltage (U), total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), power factor (PF), and power load (PL). The experiments were carried out in two stages: in the first stage, clustering dataset using self-organizing maps (SOM), 3x3 SOM in total nine hexagon nodes was used. In the second stage, inside each node builds four forecasting models: decision tree (DT), K-Nearest Neighbor(KNN) algorithm, bagging decision tree (BGDT), and boosting decision tree (BODT). Root Mean Square Error (RMSE) was used for evaluating the performance of studied models.\",\"PeriodicalId\":210548,\"journal\":{\"name\":\"2023 23rd International Scientific Conference on Electric Power Engineering (EPE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 23rd International Scientific Conference on Electric Power Engineering (EPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPE58302.2023.10149269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 23rd International Scientific Conference on Electric Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPE58302.2023.10149269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究测试了四种预测模型,结合3x3 SOM地图预测电能质量参数(pqp),分别是决策树(DT)、KNN算法、套袋决策树(BGDT)和提升决策树(BODT)。使用的输入变量是天气条件(气温、风速、气压、紫外线、太阳辐照度)和四种家用电器(空调、灯、冰箱、电视)的状态,用一个十进制数字表示。目标输出包括电源电压(U)、电压总谐波失真(THDu)、电流总谐波失真(THDi)、功率因数(PF)和功率负载(PL)。实验分两个阶段进行:第一阶段,使用自组织地图(SOM)对数据集进行聚类,共使用9个六边形节点的3x3 SOM。在第二阶段,在每个节点内部构建四个预测模型:决策树(DT)、k -最近邻(KNN)算法、套袋决策树(BGDT)和提升决策树(BODT)。采用均方根误差(RMSE)来评价所研究模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Quality Parameters Forecasting Based on SOM Maps with KNN Algorithm and Decision Tree
This study tested four forecasting models combined with 3x3 SOM maps for predicting power quality parameters (PQPs) named decision tree (DT), KNN algorithm, bagging decision tree (BGDT), and boosting decision tree (BODT). The input variables used are weather conditions (air temperature, wind speed, air pressure, Ultraviolet, solar irradiance) with states of four types of home appliances (AC heating, light, fridge, TV) represented by one decimal number. Target Outputs are Power Voltage (U), total harmonic distortion of voltage (THDu), total harmonic distortion of current (THDi), power factor (PF), and power load (PL). The experiments were carried out in two stages: in the first stage, clustering dataset using self-organizing maps (SOM), 3x3 SOM in total nine hexagon nodes was used. In the second stage, inside each node builds four forecasting models: decision tree (DT), K-Nearest Neighbor(KNN) algorithm, bagging decision tree (BGDT), and boosting decision tree (BODT). Root Mean Square Error (RMSE) was used for evaluating the performance of studied models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信