楼宇管理人员的云端能源管理系统

C. Marmaras, Amir Javed, O. Rana, L. Cipcigan
{"title":"楼宇管理人员的云端能源管理系统","authors":"C. Marmaras, Amir Javed, O. Rana, L. Cipcigan","doi":"10.1145/3053600.3053613","DOIUrl":null,"url":null,"abstract":"A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK.","PeriodicalId":115833,"journal":{"name":"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Cloud-Based Energy Management System for Building Managers\",\"authors\":\"C. Marmaras, Amir Javed, O. Rana, L. Cipcigan\",\"doi\":\"10.1145/3053600.3053613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK.\",\"PeriodicalId\":115833,\"journal\":{\"name\":\"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3053600.3053613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3053600.3053613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了一种用于控制建筑环境中电动汽车充电和储能单元的局部能量管理系统(LEMS)。为此,LEMS预测最可能出现“三合高峰”的半小时,并预测该时间段内建筑物设施的用电需求。设计了三种操作算法,使LEMS能够(i)平坦建筑设施的需求概况并减少其峰值,(ii)在三联峰期间减少建筑设施的需求,以减少输电网络使用系统(TNUoS)费用,以及(iii)通过需求侧响应使建筑物管理人员能够参与电网平衡服务市场。LEMS部署在一个基于云的系统上,并在英国曼彻斯特的一个真实建筑设施上进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cloud-Based Energy Management System for Building Managers
A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信