{"title":"楼宇管理人员的云端能源管理系统","authors":"C. Marmaras, Amir Javed, O. Rana, L. Cipcigan","doi":"10.1145/3053600.3053613","DOIUrl":null,"url":null,"abstract":"A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK.","PeriodicalId":115833,"journal":{"name":"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Cloud-Based Energy Management System for Building Managers\",\"authors\":\"C. Marmaras, Amir Javed, O. Rana, L. Cipcigan\",\"doi\":\"10.1145/3053600.3053613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK.\",\"PeriodicalId\":115833,\"journal\":{\"name\":\"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3053600.3053613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3053600.3053613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Cloud-Based Energy Management System for Building Managers
A Local Energy Management System (LEMS) is described to control Electric Vehicle charging and Energy Storage Units within built environments. To this end, the LEMS predicts the most probable half hours for a triad peak, and forecasts the electricity demand of a building facility at those times. Three operational algorithms were designed, enabling the LEMS to (i) flatten the demand profile of the building facility and reduce its peak, (ii) reduce the demand of the building facility during triad peaks in order to reduce the Transmission Network Use of System (TNUoS) charges, and (iii) enable the participation of the building manager in the grid balancing services market through demand side response. The LEMS was deployed on over a cloud-based system and demonstrated on a real building facility in Manchester, UK.