利用梯度信息和模板匹配进行钢轨和道岔检测

Jorge Corsino Espino, B. Stanciulescu, Philippe Forin
{"title":"利用梯度信息和模板匹配进行钢轨和道岔检测","authors":"Jorge Corsino Espino, B. Stanciulescu, Philippe Forin","doi":"10.1109/ICIRT.2013.6696299","DOIUrl":null,"url":null,"abstract":"This paper presents a railway track and turnout detection algorithm which is not based on an empirical threshold. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The results show (i) reliable performance for our railway track extraction scheme and (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier.","PeriodicalId":163655,"journal":{"name":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Rail and turnout detection using gradient information and template matching\",\"authors\":\"Jorge Corsino Espino, B. Stanciulescu, Philippe Forin\",\"doi\":\"10.1109/ICIRT.2013.6696299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a railway track and turnout detection algorithm which is not based on an empirical threshold. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The results show (i) reliable performance for our railway track extraction scheme and (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier.\",\"PeriodicalId\":163655,\"journal\":{\"name\":\"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIRT.2013.6696299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Intelligent Rail Transportation Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRT.2013.6696299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种不基于经验阈值的轨道道岔检测算法。轨道提取是基于利用滚动垫的宽度进行边缘检测。然后,这个边缘检测方案被用作RANSAC算法的输入,以确定轨道的模型。道岔检测方案基于定向梯度直方图(HOG)和模板匹配(TM)。结果表明:(i)我们的铁路轨道提取方案具有可靠的性能,(ii)使用支持向量机(SVM)分类器的道岔检测方案的正确率为97.31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rail and turnout detection using gradient information and template matching
This paper presents a railway track and turnout detection algorithm which is not based on an empirical threshold. The railway track extraction is based on an edge detection using the width of the rolling pads. This edge detection scheme is then used as an input to the RANSAC algorithm to determine the model of the rails. The turnout detection scheme is based on the Histogram of Oriented Gradient (HOG) and Template Matching (TM). The results show (i) reliable performance for our railway track extraction scheme and (ii) a correction rate of 97.31 percent for the turnout detection scheme using a Support Vector Machine (SVM) classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信