汽车控制系统因果链的数据时代分析与优化

Johannes Schlatow, Mischa Möstl, Sebastian Tobuschat, Tasuku Ishigooka, R. Ernst
{"title":"汽车控制系统因果链的数据时代分析与优化","authors":"Johannes Schlatow, Mischa Möstl, Sebastian Tobuschat, Tasuku Ishigooka, R. Ernst","doi":"10.1109/SIES.2018.8442077","DOIUrl":null,"url":null,"abstract":"Automotive control systems typically have latency requirements for certain cause-effect chains. When implementing and integrating these systems, these latency requirements must be guaranteed e.g. by applying a worst-case analysis that takes all indeterminism and limited predictability of the timing behaviour into account. In this paper, we address the latency analysis for multi-rate distributed cause-effect chains considering static-priority preemptive scheduling of offset-synchronised periodic tasks. We particularly focus on data age as one representative of the two most common latency semantics. Our main contribution is an Mixed Integer Linear Program-based optimisation to select design parameters (priorities, task-to-processor mapping, offsets) that minimise the data age. In our experimental evaluation, we apply our method to two real-world automotive use cases.","PeriodicalId":236091,"journal":{"name":"2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES)","volume":"419 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Data-Age Analysis and Optimisation for Cause-Effect Chains in Automotive Control Systems\",\"authors\":\"Johannes Schlatow, Mischa Möstl, Sebastian Tobuschat, Tasuku Ishigooka, R. Ernst\",\"doi\":\"10.1109/SIES.2018.8442077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive control systems typically have latency requirements for certain cause-effect chains. When implementing and integrating these systems, these latency requirements must be guaranteed e.g. by applying a worst-case analysis that takes all indeterminism and limited predictability of the timing behaviour into account. In this paper, we address the latency analysis for multi-rate distributed cause-effect chains considering static-priority preemptive scheduling of offset-synchronised periodic tasks. We particularly focus on data age as one representative of the two most common latency semantics. Our main contribution is an Mixed Integer Linear Program-based optimisation to select design parameters (priorities, task-to-processor mapping, offsets) that minimise the data age. In our experimental evaluation, we apply our method to two real-world automotive use cases.\",\"PeriodicalId\":236091,\"journal\":{\"name\":\"2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES)\",\"volume\":\"419 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIES.2018.8442077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2018.8442077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

汽车控制系统通常对某些因果链有延迟要求。当实现和集成这些系统时,必须保证这些延迟需求,例如,通过应用最坏情况分析,考虑所有不确定性和有限的可预测性的定时行为。本文研究了考虑偏移同步周期任务静态优先级抢占调度的多速率分布式因果链的时延分析。我们特别关注数据年龄,将其作为两种最常见延迟语义的代表。我们的主要贡献是基于混合整数线性程序的优化,以选择设计参数(优先级,任务到处理器的映射,偏移量),使数据年龄最小化。在我们的实验评估中,我们将我们的方法应用于两个现实世界的汽车用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Age Analysis and Optimisation for Cause-Effect Chains in Automotive Control Systems
Automotive control systems typically have latency requirements for certain cause-effect chains. When implementing and integrating these systems, these latency requirements must be guaranteed e.g. by applying a worst-case analysis that takes all indeterminism and limited predictability of the timing behaviour into account. In this paper, we address the latency analysis for multi-rate distributed cause-effect chains considering static-priority preemptive scheduling of offset-synchronised periodic tasks. We particularly focus on data age as one representative of the two most common latency semantics. Our main contribution is an Mixed Integer Linear Program-based optimisation to select design parameters (priorities, task-to-processor mapping, offsets) that minimise the data age. In our experimental evaluation, we apply our method to two real-world automotive use cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信