轻型无人机实时RGBD里程测量的基准测试

A. Willis, L. Sahawneh, K. Brink
{"title":"轻型无人机实时RGBD里程测量的基准测试","authors":"A. Willis, L. Sahawneh, K. Brink","doi":"10.1117/12.2225534","DOIUrl":null,"url":null,"abstract":"This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.","PeriodicalId":299313,"journal":{"name":"SPIE Commercial + Scientific Sensing and Imaging","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking real-time RGBD odometry for light-duty UAVs\",\"authors\":\"A. Willis, L. Sahawneh, K. Brink\",\"doi\":\"10.1117/12.2225534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.\",\"PeriodicalId\":299313,\"journal\":{\"name\":\"SPIE Commercial + Scientific Sensing and Imaging\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Commercial + Scientific Sensing and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2225534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Commercial + Scientific Sensing and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2225534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了从RGBD传感器数据实时生成3D里程计估计(delta-pose)的理论和实现挑战,以方便在杂乱的室内环境中导航。底层测程算法适用于一般的6DoF运动;然而,计算平台、轨迹和场景内容是由它们在室内轻型无人机上的预期用途驱动的。讨论概述了传感器处理的整体软件管道,并详细说明了底层特征检测和对应计算的算法选择如何影响估计里程计和相关协方差的实时性能和准确性。本文还探讨了里程计协方差估计的一致性和连续里程计估计之间的相关性。该分析旨在为用户提供所需的信息,以便在其系统的约束下更好地利用RGBD里程计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking real-time RGBD odometry for light-duty UAVs
This article describes the theoretical and implementation challenges associated with generating 3D odometry estimates (delta-pose) from RGBD sensor data in real-time to facilitate navigation in cluttered indoor environments. The underlying odometry algorithm applies to general 6DoF motion; however, the computational platforms, trajectories, and scene content are motivated by their intended use on indoor, light-duty UAVs. Discussion outlines the overall software pipeline for sensor processing and details how algorithm choices for the underlying feature detection and correspondence computation impact the real-time performance and accuracy of the estimated odometry and associated covariance. This article also explores the consistency of odometry covariance estimates and the correlation between successive odometry estimates. The analysis is intended to provide users information needed to better leverage RGBD odometry within the constraints of their systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信