自动语音识别的混合信号域节能MFCC提取架构

Qin Li, Huifeng Zhu, F. Qiao, Qi Wei, Xinjun Liu, Huazhong Yang
{"title":"自动语音识别的混合信号域节能MFCC提取架构","authors":"Qin Li, Huifeng Zhu, F. Qiao, Qi Wei, Xinjun Liu, Huazhong Yang","doi":"10.1145/3232195.3232219","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel processing architecture to extract Mel-Frequency Cepstrum Coefficients (MFCC) for automatic speech recognition. Inspired by the human ear, the energy-efficient analog-domain information processing is adopted to replace the energy-intensive Fourier Transform in conventional digital-domain. Moreover, the proposed architecture extracts the acoustic features in the mixed-signal domain, which significantly reduces the cost of Analog-to-Digital Converter (ADC) and the computational complexity. We carry out the circuit-level simulation based on 180nm CMOS technology, which shows an energy consumption of 2.4 nJ/frame, and a processing speed of 45.79 μs/frame. The proposed architecture achieves 97.2% energy saving and about 6.4× speedup than state of the art. Speech recognition simulation reaches the classification accuracy of 99% using the proposed MFCC features.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Energy-efficient MFCC extraction architecture in mixed-signal domain for automatic speech recognition\",\"authors\":\"Qin Li, Huifeng Zhu, F. Qiao, Qi Wei, Xinjun Liu, Huazhong Yang\",\"doi\":\"10.1145/3232195.3232219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel processing architecture to extract Mel-Frequency Cepstrum Coefficients (MFCC) for automatic speech recognition. Inspired by the human ear, the energy-efficient analog-domain information processing is adopted to replace the energy-intensive Fourier Transform in conventional digital-domain. Moreover, the proposed architecture extracts the acoustic features in the mixed-signal domain, which significantly reduces the cost of Analog-to-Digital Converter (ADC) and the computational complexity. We carry out the circuit-level simulation based on 180nm CMOS technology, which shows an energy consumption of 2.4 nJ/frame, and a processing speed of 45.79 μs/frame. The proposed architecture achieves 97.2% energy saving and about 6.4× speedup than state of the art. Speech recognition simulation reaches the classification accuracy of 99% using the proposed MFCC features.\",\"PeriodicalId\":401010,\"journal\":{\"name\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3232195.3232219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种用于自动语音识别的Mel-Frequency倒频谱系数(MFCC)提取的处理架构。以人耳为灵感,采用节能的模拟域信息处理方法代替传统数字域的高能耗傅里叶变换。此外,该结构提取了混合信号域的声学特征,大大降低了模数转换器(ADC)的成本和计算复杂度。我们基于180nm CMOS技术进行了电路级仿真,其能耗为2.4 nJ/帧,处理速度为45.79 μs/帧。所提出的架构实现了97.2%的节能和大约6.4倍的加速。使用所提出的MFCC特征进行语音识别仿真,分类准确率达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient MFCC extraction architecture in mixed-signal domain for automatic speech recognition
This paper proposes a novel processing architecture to extract Mel-Frequency Cepstrum Coefficients (MFCC) for automatic speech recognition. Inspired by the human ear, the energy-efficient analog-domain information processing is adopted to replace the energy-intensive Fourier Transform in conventional digital-domain. Moreover, the proposed architecture extracts the acoustic features in the mixed-signal domain, which significantly reduces the cost of Analog-to-Digital Converter (ADC) and the computational complexity. We carry out the circuit-level simulation based on 180nm CMOS technology, which shows an energy consumption of 2.4 nJ/frame, and a processing speed of 45.79 μs/frame. The proposed architecture achieves 97.2% energy saving and about 6.4× speedup than state of the art. Speech recognition simulation reaches the classification accuracy of 99% using the proposed MFCC features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信