J. Pomeroy, N. Rorsman, Jr-Tai Chen, U. Forsberg, E. Janzén, Martin Kuball
{"title":"通过系统的成核层生长优化提高GaN-on-SiC晶体管热阻","authors":"J. Pomeroy, N. Rorsman, Jr-Tai Chen, U. Forsberg, E. Janzén, Martin Kuball","doi":"10.1109/CSICS.2013.6659233","DOIUrl":null,"url":null,"abstract":"Impressive power densities have been demonstrated for GaN-on-SiC based high-power high-frequency transistors, although further gains can be achieved by further minimizing the device thermal resistance. A significant 10-30% contribution to the total device thermal resistance originates from the high defect density AlN nucleation layer at the GaN/SiC interface. This thermal resistance contribution was successfully reduced by performing systematic growth optimization, investigating growth parameters including: Substrate pretreatment temperature, growth temperature and deposition time. Interfacial thermal resistance, characterized by time resolved Raman thermography measurements AlGaN/GaN HEMT structures, were minimized by using a substrate pretreatment and growth temperature of 1200°C. Reducing the AlN thickness from 105 nm (3.3×10-8 W/m2K) to 35 nm (3.3×10-8 W/m2K), led to a ~2.5× interfacial thermal resistance reduction and the lowest value reported for a standard AlGaN/GaN HEMT structure.","PeriodicalId":257256,"journal":{"name":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved GaN-on-SiC Transistor Thermal Resistance by Systematic Nucleation Layer Growth Optimization\",\"authors\":\"J. Pomeroy, N. Rorsman, Jr-Tai Chen, U. Forsberg, E. Janzén, Martin Kuball\",\"doi\":\"10.1109/CSICS.2013.6659233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Impressive power densities have been demonstrated for GaN-on-SiC based high-power high-frequency transistors, although further gains can be achieved by further minimizing the device thermal resistance. A significant 10-30% contribution to the total device thermal resistance originates from the high defect density AlN nucleation layer at the GaN/SiC interface. This thermal resistance contribution was successfully reduced by performing systematic growth optimization, investigating growth parameters including: Substrate pretreatment temperature, growth temperature and deposition time. Interfacial thermal resistance, characterized by time resolved Raman thermography measurements AlGaN/GaN HEMT structures, were minimized by using a substrate pretreatment and growth temperature of 1200°C. Reducing the AlN thickness from 105 nm (3.3×10-8 W/m2K) to 35 nm (3.3×10-8 W/m2K), led to a ~2.5× interfacial thermal resistance reduction and the lowest value reported for a standard AlGaN/GaN HEMT structure.\",\"PeriodicalId\":257256,\"journal\":{\"name\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2013.6659233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2013.6659233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impressive power densities have been demonstrated for GaN-on-SiC based high-power high-frequency transistors, although further gains can be achieved by further minimizing the device thermal resistance. A significant 10-30% contribution to the total device thermal resistance originates from the high defect density AlN nucleation layer at the GaN/SiC interface. This thermal resistance contribution was successfully reduced by performing systematic growth optimization, investigating growth parameters including: Substrate pretreatment temperature, growth temperature and deposition time. Interfacial thermal resistance, characterized by time resolved Raman thermography measurements AlGaN/GaN HEMT structures, were minimized by using a substrate pretreatment and growth temperature of 1200°C. Reducing the AlN thickness from 105 nm (3.3×10-8 W/m2K) to 35 nm (3.3×10-8 W/m2K), led to a ~2.5× interfacial thermal resistance reduction and the lowest value reported for a standard AlGaN/GaN HEMT structure.