Sanjeev Gurugopinath, R. Muralishankar, H. N. Shankar
{"title":"基于微分熵的认知无线电频谱感知","authors":"Sanjeev Gurugopinath, R. Muralishankar, H. N. Shankar","doi":"10.4108/eai.5-4-2016.151147","DOIUrl":null,"url":null,"abstract":"In this work, we present a novel Goodness-of-Fit Test driven by differential entropy for spectrum sensing in cognitive radios, under three different noise models – Gaussian, Laplacian and mixture of Gaussians. We analyze the proposed detector under Gaussian noise which models the worst-case. We then analyze by considering the Laplacian noise process which has tails heavier than that of the Gaussian. We generalize the analysis considering the noise to be a mixture of Gaussians, which is often the case with noise and interference in communication systems. We analyze the performance under each of these cases for a large class of practically relevant fading channel models and primary signal models, with emphasis on low Signal-to-Noise ratio regimes. Towards this end, we derive closed form expressions for the distribution of the test statistic under the null hypothesis and the detection threshold that satisfies a constraint on the probability of false-alarm. Through Monte Carlo simulations, we demonstrate that our detection strategy outperforms an existing spectrum sensing technique based on order statistics. Received on 15 August, 2015; accepted on 4 December, 2015; published on 05 April, 2016","PeriodicalId":334012,"journal":{"name":"EAI Endorsed Trans. Cogn. Commun.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spectrum Sensing For Cognitive Radios Through Differential Entropy\",\"authors\":\"Sanjeev Gurugopinath, R. Muralishankar, H. N. Shankar\",\"doi\":\"10.4108/eai.5-4-2016.151147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a novel Goodness-of-Fit Test driven by differential entropy for spectrum sensing in cognitive radios, under three different noise models – Gaussian, Laplacian and mixture of Gaussians. We analyze the proposed detector under Gaussian noise which models the worst-case. We then analyze by considering the Laplacian noise process which has tails heavier than that of the Gaussian. We generalize the analysis considering the noise to be a mixture of Gaussians, which is often the case with noise and interference in communication systems. We analyze the performance under each of these cases for a large class of practically relevant fading channel models and primary signal models, with emphasis on low Signal-to-Noise ratio regimes. Towards this end, we derive closed form expressions for the distribution of the test statistic under the null hypothesis and the detection threshold that satisfies a constraint on the probability of false-alarm. Through Monte Carlo simulations, we demonstrate that our detection strategy outperforms an existing spectrum sensing technique based on order statistics. Received on 15 August, 2015; accepted on 4 December, 2015; published on 05 April, 2016\",\"PeriodicalId\":334012,\"journal\":{\"name\":\"EAI Endorsed Trans. Cogn. Commun.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Cogn. Commun.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.5-4-2016.151147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Cogn. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.5-4-2016.151147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectrum Sensing For Cognitive Radios Through Differential Entropy
In this work, we present a novel Goodness-of-Fit Test driven by differential entropy for spectrum sensing in cognitive radios, under three different noise models – Gaussian, Laplacian and mixture of Gaussians. We analyze the proposed detector under Gaussian noise which models the worst-case. We then analyze by considering the Laplacian noise process which has tails heavier than that of the Gaussian. We generalize the analysis considering the noise to be a mixture of Gaussians, which is often the case with noise and interference in communication systems. We analyze the performance under each of these cases for a large class of practically relevant fading channel models and primary signal models, with emphasis on low Signal-to-Noise ratio regimes. Towards this end, we derive closed form expressions for the distribution of the test statistic under the null hypothesis and the detection threshold that satisfies a constraint on the probability of false-alarm. Through Monte Carlo simulations, we demonstrate that our detection strategy outperforms an existing spectrum sensing technique based on order statistics. Received on 15 August, 2015; accepted on 4 December, 2015; published on 05 April, 2016